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Bacteria evolve in volatile environments and complex spatial structures. Migration, fluctuations
and environmental variability therefore have a significant impact on the evolution of microbial pop-
ulations. Here, we consider a class of spatially explicit metapopulation models arranged as regular
(circulation) graphs where wild-type and mutant cells compete in a time-fluctuating environment
where demes (subpopulations) are connected by slow cell migration. The carrying capacity is the
same at each deme and endlessly switches between two values associated to harsh and mild envi-
ronmental conditions. When the rate of switching is neither too slow nor too fast, the dynamics is
characterised by bottlenecks and the population is prone to fluctuations or extinction. We analyse
how slow migration, spatial structure, and fluctuations affect the phenomena of fixation and ex-
tinction on clique, cycle, and square lattice metapopulations. When the carrying capacity remains
large, bottlenecks are weak and deme extinction can be ignored. The dynamics is thus captured by
a coarse-grained description within which the probability and mean time of fixation are obtained
analytically. This allows us to show that, in contrast to what happens in static environments, the
mutant fixation probability depends on the rate of migration. We also show that the fixation proba-
bility and mean fixation time can exhibit a non-monotonic dependence on the switching rate. When
the carrying capacity is small under harsh conditions, bottlenecks are strong, and the metapopu-
lation evolution is shaped by the coupling of deme extinction and strain competition. This yields
rich dynamical scenarios, among which we identify the best conditions to eradicate mutants with-
out dooming the metapopulation to extinction. We offer an interpretation of these findings in the
context of an idealised treatment and discuss possible generalisations of our models.

I. INTRODUCTION

Microbial populations live in volatile and time-varying
environments embedded in complex spatial settings,
across which the distribution of microbes fluctuates. For
instance, many organisms live in densely packed aggre-
gates on surface-attached biofilms [1], numerous com-
mensal bacteria are distributed throughout the gastroin-
testinal tract [2, 3], and patients’ organs are spatial envi-
ronments between which bacteria can migrate [4]. More-
over, natural environments are not static, e.g. tempera-
ture, pH, or available resources change over time. These
abiotic variations, not caused by the organisms them-
selves, are referred to as environmental fluctuations and
can have a significant influence on the evolution of nat-
ural populations. For example, the gut microbiome of a
host is exposed to fluctuations of great amplitude on vari-
ous timescales, and these affect the diversity of the micro-
biota [5, 6]. In small populations, demographic fluctua-
tions are another important form of randomness resulting
in fixation - where one strain takes over the community -
or extinction [7, 8]. Since the variations of population size
and composition are often interdependent [9–15], this can
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lead to the coupling of environmental and demographic
fluctuations [16–24]. Their interplay is particularly sig-
nificant in microbial communities, where it can lead to
population bottlenecks, where new colonies consisting of
a few cells are prone to fluctuations [25–29]. Population
bottlenecks and fluctuations are particularly relevant for
the evolution of antimicrobial resistance, when cells sur-
viving antibiotics treatment may replicate leading to the
spread of resistance [21, 24, 30–32].

How likely is a population to be taken over by a mutant
or to go extinct? What is the typical time for these events
to occur? These are central questions in evolution, and
the answers depend on the population’s spatial structure
as well as the environmental variations and fluctuations.
In this context, it is important to understand the impact
of spatial structure, migration, and fluctuations on the
spread of a mutant strain. A common approach to repre-
sent a spatially structured biological population is by di-
viding it into several demes - well-mixed subpopulations
connected by cell migration - hence forming a metapopu-
lation [33–42]. The influence of the spatial arrangement
of a population and stochastic fluctuations on mutants’
fate has been studied in static environments both theo-
retically [33, 34, 41, 43–54] and experimentally [55–58].
Maruyama notably showed that in a constant environ-
ment, when cell migration is symmetric and preserves
the overall mutant fraction, the fixation probability of a
mutant is independent of the spatial structure and migra-
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tion rate [43]. However, it has been shown that random
extinction and recolonisation can affect the mutant fixa-
tion probability on fully-connected (static) graphs, even
when cell migration is symmetric [44]. In this case, deme
extinction is immediately followed by recolonisation by
a mixture of cells from other demes [35, 36, 44]. Fur-
thermore, independent extinction and recolonisation by
a single neighbour of demes has been studied on fully-
connected (static) graphs [59]. Recently, the authors of
Ref. [41] studied the the influence of slow migration on
the fate of mutants on static graphs, and demonstrated
that migration asymmetry can dramatically affect their
fixation probability on certain spatial structures like the
star graph. However, the biologically relevant problem
of mutants evolving in time-varying spatially structured
populations has been rather scarcely investigated, and
the case of strains competing to colonise and fixate demes
prone to extinction remains under-explored.

Here, we tackle these important issues by studying a
class of time-fluctuating microbial metapopulation mod-
els consisting of demes in which wild-type and mutant
cells evolve in a time-varying environment represented
by a switching carrying capacity. We use coarse-grained
descriptions of the dynamics to study the joint influence
of environmental variability, demographic fluctuations,
migration, and spatial structure on the evolution of the
metapopulation. We obtain explicit results for cliques
(island model [33, 34], or fully-connected graph), cycles,
and two-dimensional grids (with periodic boundaries). In
stark contrast with the evolution in static environments,
we demonstrate that when bottlenecks are weak, the fix-
ation probability on regular circulation graphs depends
on the migration rate. Moreover, we show that under
the effect of environmental variability and fluctuations
the fixation probability and mean fixation time can ex-
hibit a non-monotonic dependence on the switching rate.
In the case of strong bottlenecks, arising when the car-
rying capacity is small under harsh conditions, the dy-
namics is characterised by deme extinction and strain
competition coupled by environmental switching. This
yields rich dynamical scenarios among which we identify
the best conditions to eradicate mutants without risking
metapopulation extinction.

In the next section, we introduce the explicit spa-
tial metapopulation model that we study and outline
our methodology. In Sec. III, we present our results in
the case of static environments. This paves the way to
the detailed analysis in time-fluctuating environments of
Sec. IV, with the weak and strong bottleneck regimes re-
spectively studied in Secs. IV 1 and IV 2. Sec. V is ded-
icated to a discussion of our findings, assumptions and
possible generalisations. We present our conclusions in
Sec. VI. Additional technical details are given in a series
of appendices.

II. MODEL & METHODS

We consider a class of spatially explicit metapopulation
models of Ω demes labelled by x ∈ {1, ...,Ω}, each of
which at time t consists of a well-mixed subpopulation
of nW cells of wild-type W , and nM mutants of strain
M . Wild-type cells have a baseline fitness fW = 1 and
mutant cells have fitness fM = 1 + s. We assume 0 <
s≪ 1, giving M a small selective advantage over W .
The microbial metapopulation can be envisioned as a

graph whose nodes x ∈ {1, . . . ,Ω} are demes (also called
sites). Each deme is a well-mixed subpopulation of size
n = nW + nM located at a node of the metapopulation
graph. Here, we focus on fully-connected graphs (as in
the island model [33, 34]), called cliques, and periodic
one- and two-dimensional lattices called respectively cy-
cles and grids, see Fig. 1(a). These are regular circulation
graphs, generally denoted by G = {clique, cycle, grid}, of
Ω demes connected by edges to their qG nearest neigh-
bours via cell migration at per capita rate m (indepen-
dently from division and death) [33, 34, 41–43, 60], see
Fig. 1(a-c). We study the eco-evolutionary dynamics of
the metapopulation in the biologically relevant regime of
slow migration [41, 42, 61–63], see Appendix B, and con-
sider that initially one deme is occupied entirely by mu-
tants (M deme), while the other Ω−1 demes (W demes)
are all populated by W cells, see Sec. V. All demes are
assumed to have the same carrying capacity K which en-
codes environmental variability. In Sec. III, we assume
that K is constant, and in Sec. IV we let the carrying ca-
pacity switch endlessly between two values representing
mild and harsh conditions [16–24, 32], see below.
In close relation to the Moran process [64–67] (see Ap-

pendix B), a reference model in mathematical biology [7],
the intra-deme dynamics in a deme x is thus represented
by a multivariate birth-death process defined by birth
and death of a cell of type α ∈ {W,M} in that site ac-
cording to the reactions [16, 17, 22, 32]

nα
T+
α−→ nα + 1 and nα

T−
α−→ nα − 1, (1)

occurring at the transition rates

T+
α (x) =

fα

f
nα and T−

α (x) =
n

K
nα, (2)

where f ≡ (nW fW + nMfM )/n is the the average fitness
in deme x, and K here denotes the constant carrying
capacity in a static environment and its time-switching
version in a dynamical environment, see below. In this
formulation, without loss of generality, selection operates
on birth events. This can be generalised to include selec-
tion on deaths, see e.g. [10, 11].
The inter-deme dynamics stems from the migration of

one cell of type α ∈ {W,M} from the site x to one of
its qG neighbouring demes denoted by y at a per-capita
migration rate m. Here, for the sake of simplicity, we as-
sume that the migration rate is the same in all directions
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FIG. 1. Metapopulation dynamics in a static environment. (a) Examples of metapopulation graphs: a clique, cycle, and grid
(from left to right). Neighbouring demes are connected by migration (double arrows). Initially, there is one mutant deme
(red/light) and Ω− 1 wild-type demes (blue / dark), and all demes have the same constant carrying capacity K. (b) Dynamics
in a single deme. Left: Wild-type W cells (blue / dark) compete with mutants of type M (red / light). When K is small, the
deme is prone to extinction. When K is large, both types coexist prior to W or M fixation. Top, right: Several realisations
of the rescaled deme size n/K vs. time t for K = 5 (orange/light) and K = 100 (green/dark). Bottom, right: Fraction of M
cells vs. t in a deme with K = 100. Deme extinction is not observed. Transient coexistence of W and M is followed by the
fixation of W (blue traces) or M (red traces). Here s = 0.01. (c) Invasion of W deme by an M cell: An M cell migrates to
a neighbouring W deme with migration rate m after a mean time ∆t = 1/(mK), and then either quickly fixes, producing a
new M deme (right), or does not fix leaving the pair of M and W demes unchanged (left). The same picture holds for the
invasion of an M deme by a W cell, see text. (d) Intermediate regime (here for the clique): The dynamics is characterised by
deme extinction and W/M competition (see text). Deme extinction occurs after a mean time τE , and empty demes are then
recolonised by an invader from a neighbouring surviving deme after ∆t ∼ 1/(mK). A recolonised deme is rapidly taken over (in
∆t ∼ O(1)). (e) Coarse-grained description of the metapopulation dynamics: Each deme is always either fully W (blue / dark)
or M (red / light) or empty (white). In this description, different scenarios arise, shown for the clique. Competition-dominated
regime: all demes are occupied and there is always fixation of W or M . Intermediate regime: eventually W or M take over
all occupied demes, resulting in a dynamic equilibrium of empty demes and W or M demes, see text. Extinction-dominated
regime: there are frequent deme extinctions and the metapopulation quickly goes extinct.

and for both types (symmetric migration) (see Sec. V
for a discussion of these assumptions). The inter-deme
dynamics for all cells at deme x with its neighbouring
demes labelled y is therefore implemented according to
the reaction[

nα(x), nα(y)
] Tm,G

α−→
[
nα(x)− 1, nα(y) + 1

]
, (3)

occurring at the migration transition rate

Tm,Gα (x) =
mnα
qG

. (4)

Microbial communities generally live in time-varying

conditions, and are often subject to sudden and drastic
environmental changes. Here, environmental variability
is encoded in the time-variation of the binary carrying
capacity [16–24, 32]

K(t) =
1

2
[K− +K− + ξ(t)(K+ −K−)] . (5)

driven by a random telegraph process ξ(t) ∈ {−1, 1}.
The coloured dichotomous Markov noise (DMN) ξ(t)
switches between ±1 according to ξ → −ξ at rate ν for
the symmetric DMN (see Secs. V and H for the gen-
eralisation to asymmetric switching) [68–70]. The car-
rying capacity, equal across demes, thus switches at a
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rate ν between a value K = K+ in a mild environ-
ment (e.g. abundance of nutrients, lack of toxin) and
K = K− < K+ under harsh environmental conditions
(e.g. lack of nutrients, abundance of toxin) according to

K−
ν
⇌ K+, and thus represents random cycles of mild

and harsh conditions (feast and famine cycles). The ran-
domly time-switching K(t) drives the size of each deme,
and is hence responsible for the coupling of demographic
fluctuations with environmental variability, an effect par-
ticularly important when there are population bottle-
necks [18, 19, 21–24, 32], see below. Here, the DMN is at
stationarity and therefore its average vanishes, ⟨ξ(t)⟩ = 0,
and its autocovariance coincides with its autocorrelation
reading ⟨ξ(t)ξ(t′)⟩ = e−2ν|t−t′| [68–70], where ⟨·⟩ denotes
the ensemble average and 1/(2ν) is the finite correla-
tion time. This implies that the fluctuating carrying
capacity is always at stationarity, with a constant av-
erage ⟨K(t)⟩ = ⟨K⟩ = (K+ + K−)/2 and an autocorre-

lation ⟨K(t)K(t′)⟩ = ⟨K⟩e−2ν|t−t′|. In our simulations
with symmetric random switching, the carrying capacity
is initially drawn from its stationary distribution, with
K(0) = K+ or K(0) = K− each with probability 1/2,
see Secs. V and H.

The full individual-based model is therefore a
continuous-time multivariate Markov process defined by
the reaction and transition rates Eqs. (1)-(4) that satisfies
the master equation Eq. (A2) discussed in Appendix A1.
The microscopic intra- and inter-deme dynamics encoded
in the master equation (A2) has been simulated using
the Monte Carlo method described in Appendix I. The
eco-evolutionary dynamics of a single deme is outlined
in Appendix A 2. It is worth noting that n, nW , and
nM are all fluctuating quantities that depend on the site
x and time t, and on ξ in a time-varying environment.
However, for notational simplicity, we often drop the ex-
plicit dependence on some or all of the variables x, t, and
ξ. Below, we combine coarse-grained analytical approx-
imations and individual-based stochastic simulations to
study how the spatial structure, migration, and demo-
graphic fluctuations influence the fixation and extinction
properties of the microbial metapopulation.

III. STATIC ENVIRONMENTS

We first consider a static environment where the carry-
ing capacity K of each deme is constant. In this setting,
the size of each deme rapidly reaches K, with n ≈ K,
see Fig. 1(b), and the expected number of migrants per
unit time and deme is mK. The occurrence of migra-
tion events, alongside the competition between M and
W to take over demes of the other type, increases with
K. Cell migration and competition are however limited
when K is small: regardless of their type, demes of small
size are prone to extinction in a mean time τE(K), see
Fig. 1(b,d). For independent demes of size K, the deme
mean extinction time τE(K) can be obtained from a lo-

gistic birth-death process, see Appendix C, yielding

τE(K) ≈ eK

K
, (6)

when K ≫ 1, see Fig. 2(e). In our analysis, we distin-
guish between different dynamical scenarios through

ψ(m,K) ≡ mKτE , (7)

giving the average number of migration events during
the typical deme extinction time. With Eq. (6), we have
ψ(m,K) ≈ meK when K ≫ 1. In the regime where
ψ ≫ 1, many migration events occur before any deme
extinction, and the dynamics is thus dominated byM/W
competition. When ψ(m,K) < 1, migration is ineffective
and there is fast extinction of all demes. An intermediate
regime where some demes are empty and others occupied
by W or M arises when ψ(m,K) ≳ 1. To rationalise
this picture in the coarse-grained description of Ref. [59],
it is useful to track the number of occupied demes j =
0, 1, . . . ,Ω (by eitherW orM cells). For cliques, as shown
in Appendix D, we find that the long-time fraction of
occupied demes is

j

Ω
→ Ωocc(m,K)

Ω
≈


1 if ψ ≫ 1,
ψ−1
ψ if ψ ≳ 1,

0 if ψ < 1.

(8)

The expression of Ωocc ignores spatial correlations and
hence is not accurate for cycles and grids if ψ(m,K) is
not much larger than 1. However, ψ(m,K) allows us to
efficiently distinguish between the regimes dominated by
M/W competition, deme extinction, and the crossover
intermediate regime, see Fig. 9 and Appendix D.
Henceforth, we refer to “invasion” when a cell of type

M/W migrates to and fixates in a W/M deme, and to
“recolonisation” when a cell of either type migrates into
an empty deme and takes it over, see Fig. 1(c,d). Ac-
cordingly, the competition-dominated and intermediate
regimes are respectively characterised by invasions and
recolonisations, see Fig. 1(c,d).

1. Competition-dominated dynamics

When ψ ≫ 1 andm≪ 1, the carrying capacity is large
enough for many migrations to occur on the timescale
τE of deme extinction. Since every deme expects many
incoming cells in time τE , deme extinction is unlikely
and can be neglected. In this regime, the dynamics is
dominated by local M/W competition: W and M cells
compete in each deme to fixate the local subpopulation,
see Fig. 1(b).

As in Refs. [41, 42, 51], we can adopt a coarse-grained
description treating each deme as a single entity of type
W or M . In doing so, we assume that migration is slow
so that the mean time for anM orW invader to fixate in
a deme is negligible compared to 1/(mK), the expected
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FIG. 2. (a-d): Competition-dominated dynamics, ψ ≫ 1. (a) M fixation probability ϕ vs. constant carrying capacity K; (b)
unconditional mean fixation time θ vs. K; (c) ϕ vs. per capita migration rate m; (d) θ vs. m. Markers are simulation results
and lines are predictions of Eq. (12) for s = 0.1 (blue) and s = 0.01 (red) on a clique (solid lines / crosses), cycle (dashed lines /
circles), and grid (dotted lines / triangles). In (a,b), m = 10−4,Ω = 16, and in (c,d), K = 50,Ω = 16. In (a,c), markers for the
same s are almost indistinguishable indicating independence of the spatial structure. (e,f): Extinction-dominated dynamics,
ψ < 1. (e) Mean extinction time of a single deme τE vs. K (m = 0). Blue circles are simulation data, black line line shows the
predictions of Eq. (6). (f) Metapopulation mean extinction time θE vs. K for Ω = 16 and m = 10−2 (blue) and 10−4 (red).
Markers are simulation results and thick lines are predictions of Eq. (C4) for cliques (solid lines / crosses), cycles (dashed lines
/ circles), and grids (dotted lines / triangles). Thin dashed vertical lines are guides to the eye showing ψ = 1 for m = 10−2

(blue) and 10−4 (red). Selection plays no role in this regime, so panels (e,f) have been obtained with s = 0. In all panels, there
is initially one M deme and Ω− 1 demes occupied by W . Error bars are plotted in each case but are typically too small to see.

time between migrations, see Appendix C. In this regime,
each sequential migration is an invasion attempt, with a
cell from an M/W site trying to invade a neighbouring
W/M deme, see Fig. 1(c). Here, anM/W invasion is the
fixation of a single M/W mutant in a deme consisting of
K − 1 cells of type W/M .
In the realm of the coarse-grained description, the state

of the metapopulation in this regime is denoted by i,
where i = 0, 1, . . . ,Ω is the number of demes of type M
leaving Ω− i demes of type W . The probability ρM/W of
invasion by an M/W migrant is here given by the prob-
ability that a single M/W cell takes over a population
of constant size K in a Moran process [7, 64–67] and, as
shown in Appendix B, reads

ρM (K) =
1

1 + s

[
s

1− (1 + s)−K

]
,

ρW (K) =
1

(1 + s)K

[
s

1− (1 + s)−K

]
.

(9)

In each time unit, a deme receives from and sends to its
neighbours an average of mK cells. Importantly, only
edges connecting M and W demes can lead to invasions,
see Fig. 1(c). These are “active edges” and their num-
ber in state i on graph G is denoted by EG(i), where
here we consider G = {clique, cycle, grid}. Moreover, mi-
gration from a deme can occur to any of the qG neigh-
bours of the deme, where qclique = Ω − 1, qcycle = 2,
qgrid = 4, and qd−dim = 2d for a d-dimensional regular
lattice, see Eq. (A1). The number of active edges gener-
ally varies with the metapopulation state and the spatial
structure, and is difficult to determine. However, a clique
being the fully-connected graph, the i demes of type M
are connected to the Ω − i demes of type W , yielding
Eclique(i) = i(Ω − i). For a cycle, if the initial state is
i = 1, the initial M deme is exactly connected to two W
demes. This property is conserved by the coarse-grained
dynamics, with an unbreakable cluster of M demes al-
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ways connected to a cluster of W demes by two active
edges until W or M fixes the metapopulation, yielding
Ecycle(i) = 2 for i ̸= 0,Ω, see Fig. 1(a,c) and below. The
number of active edges in a grid is difficult to find due to
complex spatial correlations, but in Appendix E, we show
that its average starting from the metapopulation state
(i,Ω− i) = (1,Ω−1), can be approximated by 2

√
πi. We

will therefore approximate Egrid(i) ≈ 2
√
πi for i ̸= 0,Ω.

When i = 0,Ω, one strain fixates the entire metapopula-
tion, where all demes are M if i = Ω and all demes are
W when i = 0, and hence EG(0) = EG(Ω) = 0.
In the coarse-grained description of the competition-

dominated dynamics, starting from a singleM deme (i =
1), there are mKEG(i)/qG expected migration attempts
to grow an unbreakable cluster of connectedM demes by
invading neighbouring W demes. Since the probability
of an M invasion is ρM , given by Eq. (9), the M -cluster
grows at a rate mKEG(i)ρM/qG. Similarly a W invader
attempts to grow an unbreakable W -cluster by invading
M demes, hence reducing the size of the M cluster, at a
rate mKEG(i)ρW /qG. In this representation, M and W
invasions therefore act at the interface of an unbreakable
cluster of M demes by increasing or reducing its size i at
respective rates [41, 42, 60],

T+
i (m,G,K) = mK

EG(i)

qG
ρM ,

T−
i (m,G,K) = mK

EG(i)

qG
ρW .

(10)

The coarse-grained competition-dominated dynamics is
thus a birth-death process for the M -cluster size i, with
absorbing boundaries at i = Ω (M fixation) and i = 0 (W
fixation), see Appendix G. In this representation, the M
fixation probability in a metapopulation of size Ω, spa-
tially structured as a graph G, consisting initially of i
mutant demes is denoted ϕGi , and the unconditional (i.e.
regardless of whetherM orW takes over [7, 66, 67]) mean
fixation time (uMFT) denoted θGi . These quantities sat-
isfy the first-step equations [7, 66, 67, 71]

(T+
i + T−

i )ϕGi = T+
i ϕ

G
i+1 + T−

i ϕ
G
i−1,

(T+
i + T−

i )θGi = 1 + T+
i θ

G
i+1 + T−

i θ
G
i−1,

(11)

for i = 1, . . . ,Ω − 1, with boundary conditions ϕG0 =
1−ϕGΩ = 0 and θG0 = θGΩ = 0. Eqs. (11) can be solved ex-
actly [66, 67] (see also Appendix B). Here, we are chiefly
interested in the fixation of a single initialM deme, i = 1,
and simply write ϕG ≡ ϕG1 and θG ≡ θG1 , finding

ϕG(K) = ϕ(K) =
1− γ

1− γΩ
,

θG(m,G,K) =
1− γ

1− γΩ

Ω−1∑
k=1

k∑
n=1

γk−n

T+
n (m,G,K)

,

(12)

where γ ≡ T−
i /T

+
i = ρW /ρM ≈ exp(−Ks) is a quantity

independent of m and G. As noted in Refs. [41, 42, 50]

the fixation probability ϕG = ϕ is therefore indepen-
dent of the migration rate and spatial structure. This
remarkable result stems from the graphs considered here
being circulations: There is the same incoming and out-
going migration flow at each deme. In static environ-
ments, a generalised circulation theorem ensures that the
fixation probability is independent of m and G for cir-
culation graphs [41, 42, 47], a feature displayed in the
stochastic simulations of Fig. 2(a,c) for the full micro-
scopic model. In excellent agreement with simulation
data of Fig. 2(a,c), we find that the M fixation prob-
ability increases almost exponentially and approaches 1
when Ks ≫ 1, ϕG ≈ 1. This stems from the invasion of
W demes being increasingly likely (and the invasion ofM
demes exponentially less likely) when the average num-
ber of migrations (mK) increases along with K. When
Ks ≪ 1, the competition is effectively neutral, and in
this case ϕG ≈ 1/Ω. In good agreement with simulation
results of Fig. 2(b,d), Eq. (12), predicts that the uMFT
decreases with the migration rate θG ∼ 1/m and, for
given parameters, the uMFT is shortest on cliques, while
it is larger on cycles than on grids. Intuitively, for higher
m and more connected graphs, migrants spread faster
leading to quicker invasion and fixation.

2. Extinction-dominated dynamics

In the extinction-dominated regime ψ < 1 withm≪ 1,
we do not expect any deme invasions in a time τE . There-
fore, the timescale of extinction dynamics is much shorter
than that ofM/W competition, and site extinction dom-
inates over deme invasion, see Fig. 1e. The dynamics in
this extinction-dominated regime is governed by the ran-
dom extinction of demes, regardless of their type. Follow-
ing Ref. [59], in the realm of the coarse-grained descrip-
tion outlined in Appendix C, demes are regarded as being
either occupied (by eitherW orM cells) or empty. Deme
extinction occurs randomly while empty demes may be
recolonised by migrations from occupied neighbouring
demes. The coarse-grained dynamics is thus indepen-
dent of the spatial structure, and can be represented by
a birth-death process for the number of occupied demes,
assuming that the site extinction and recolonisation oc-
cur instantaneously [59], see Appendix C. In this coarse-
grained representation, when all demes are initially oc-
cupied (n = K), the metapopulation mean extinction
time (mMET) is given by Eq. (C4) in Appendix C. When
Ω ≫ 1 and ψ < 1, the leading contribution to the mMET
arises from the term i = n in the innermost sum, yielding

θE(K,Ω) ≈ τE(ln(Ω) + γEM), (13)

where γEM ≈ 0.577... is the Euler-Mascheroni constant.
Eq. (13) gives a good approximation of the mMET. As ψ
increases with K, at the upper-limit of the extinction-
dominated limit (where ψ approaches 1), the mMET
grows almost exponentially with K and logarithmically
with Ω, θE ≈ eK ln (Ω)/K. Eq. (C4) thus predicts a
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rapid growth of the mMET when ψ ≳ 1, as shown in
Fig. 2(f,g) where simulation results are found to be in
good agreement with Eq. (C4).

3. Intermediate dynamics

In the intermediate regime ψ ≳ 1 and m ≪ 1, there
is a crossover between the extinction and competition-
dominated dynamics. At fixed migration rate m, this
crossover regime occurs in the range ln (1/m) ≲ K ≲
ln (ΩK/m). Furthermore, the metapopulation is par-
tially occupied for ln (1/m) ≲ K ≲ ln (Ω/m) correspond-
ing to 1 < ψ < Ω − 1. These bounds are illustrated by
the vertical lines in Fig. 11.

When ψ ≳ 1, migration and deme extinction occur
on the timescale τE . In the long run, deme recoloni-
sations and extinctions balance each other, yielding a
dynamical equilibrium consisting of Ωocc = Ω(1 − 1/ψ)
occupied demes and Ω − Ωocc empty demes, see Fig. 9.
In this regime, the three-state coarse-grained description
of the dynamical equilibrium consists of a random mix-
ture of empty demes, and occupied W and M demes, see
Fig. 1(d). After a mean time θGint the metapopulation
reaches the dynamical equilibrium consisting of a frac-
tion 1− Ωocc/Ω = 1/ψ empty demes, and the remaining
demes are all of either typeM orW with probability ϕGint
and 1− ϕGint, respectively. The dynamical equilibrium is
thus defined by the quantities ψ, given by Eq. (7), and
ϕGint which is the probability that mutants M take over
the Ωocc = Ω(1 − 1/ψ) occupied demes in a mean time
θGint. These quantities are derived and discussed in in
Appendix F for a metapopulation on an arbitrary reg-
ular lattice consisting initially of a single M deme, see
(F3) and Fig. 11

IV. TIME-FLUCTUATING ENVIRONMENTS

Microbial populations generally evolve in time-varying
environments, and are often subject to conditions chang-
ing suddenly and drastically, e.g. experiencing cycles of
harsh and mild environmental states [20, 28, 30, 72–83],
see Fig. 3. These variations cause fluctuations often asso-
ciated with population bottlenecks, arising when the deme
size is drastically reduced, e.g. due to nutrient scarcity
or exposure to toxins [27–29, 31, 77]. Here, environmen-
tal variability is encoded in the time-fluctuating carrying
capacity K(t) (5) driven by the DMN ξ(t) ∈ {−1, 1} [16–
24, 32, 68–70], see Sec. II. Hence, when ν ≲ 1, the deme
size n tracks K(t) and experiences a bottleneck when-
ever the carrying capacity switches from K+ to K−, see
Appendix A 2 and Fig. 3(a,right) [16–18].

In order to study the joint effect of migration and fluc-
tuations on the metapopulation dynamics, we assume
K+ ≫ 1 such that demographic fluctuations are weak
in the mild environment. In what follows, we distin-
guish between weak bottlenecks, where ψ(m,K−) ≫ 1

and deme extinction is negligible, and strong bottlenecks,
where ψ(m,K−) < 1 and deme extinctions dominate.

1. Weak bottlenecks: ψ(m,K−) ≫ 1

When K+ > K− with ψ(m,K−) ≫ 1, each deme
experiences a weak bottleneck at an average frequency
ν/2 when ν ≲ 1, see Fig. 3(a,top). The condition
ψ(m,K−) ≈ meK− ≫ 1 ensures that deme extinction
can be neglected, with metapopulation dynamics domi-
nated by M/W competition. The metapopulation fate
can thus be captured by a two-state coarse-grained de-
scription similar to that of Sec. III 1. Since the deme size
in the environment ξ, and hence the number of migrating
cells, varies with K(t), it is useful to introduce the long-
term average deme size in environmental state ξ = ±1
under switching rate ν denoted by Nξ(ν) ≡ N±(ν), see
below.
We first discuss the metapopulation fate in the limit of

slow and fast environmental switching, and then return
to the above case of intermediate switching.
When the environment varies very slowly, ν ≪ 1,

the carrying capacity remains at its initial value, i.e.
K(t) = K+ or K(t) = K− each with a probability 1/2,
until invasions lead to the fixation of W or M . In the
slow switching regime, the M fixation probability and
uMFT on a metapopulation spatially arranged as a regu-
lar graph G are respectively denoted by ΦG

0 and ΘG
0 . The

quantities are obtained by averaging their static counter-
parts (12) over the stationary distribution of K, yielding
for symmetric switching

ΦG
0 (m,K±) = Φ0(K±) =

1

2
[ϕ(K+) + ϕ(K−)] ,

ΘG
0 (m,K±) =

1

2

[
θG(m,K+) + θG(m,K−)

]
.

(14)

When the environment varies very quickly, ν ≫ 1, the
DMN self averages before invasion-mediated fixation oc-
curs, and the carrying capacity of each deme rapidly
reaches the effective value

K ≡ 2K+K−

K+ +K−
, (15)

the harmonic mean of K+ and K−, with N±(∞) →
K [16–18, 22], see Appendix A 2. In this fast switch-
ing regime, the M fixation probability and uMFT on a
metapopulation spatially arranged as a regular graph G,
respectively denoted by ΦG

∞ and ΘG
∞, are obtained by

replacing K with K in Eq. (12), yielding

ΦG
∞(m,K) = Φ∞(K) = ϕ(K),

ΘG
∞(m,K±) = θG(m,K).

(16)

From these expressions and Eq. (12), we notice the fixa-
tion probability in the regime of slow and fast switching is
independent of the migration rate and spatial structure:
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FIG. 3. (a) Left: single deme in time-switching environment. The carrying capacity K(t) encodes environmental variability
by switching between K = K+ (mild environment, green / light) and K(t) = K− < K+ (harsh environment, orange /
dark) at symmetric rate ν (see also Appendix H). Communities are larger in the mild environment. When K(t) switches at
an intermediate rate, each deme experiences bottlenecks at an average frequency 1/(2ν). Right: n and K vs. time in the
intermediate switching regime where the size n of a deme undergoes bottlenecks. Parameters are: K+ = 200, ν = 0.05 and
K− = 100 (top) and K− = 5 (bottom). The bottlenecks are weak when ψ(m,K−) ≫ 1 (top, right) where deme extinction
is unlikely. When ψ(m,K−) < 1, there are strong bottlenecks and each deme can go extinct in the harsh environment
(bottom, right). (b) Clique metapopulation with Ω = 6 connected demes (double arrows). All demes have the same time-
switching carrying capacity K(t) encoding environmental variability across the metapopulation, with each deme in the same
environmental state. (c) Example evolution across two nearest-neighbour demes in a switching environment subject to strong
bottlenecks in the intermediate switching regime, see text. Starting in the mild environment where K = K+, the carrying
capacity switches to K− (harsh environment) after t ∼ 1/ν. Following the K+ → K− switch, each deme size decreases and each
subpopulation is subject to strong demographic fluctuations and hence prone to extinction. In the absence of recolonisation
of empty demes, effective only in the mild state, all demes go extinct. If there is a switch back to the mild environment
K− → K+ prior to total extinction, empty demes can be rescued by migration and recolonised by incoming W or M cells from
neighbouring demes. In the sketch, an empty deme is recolonised by a mutant in the mild environment and becomes an M
deme. The cycle continues until the entire metapopulation consists of only W or M demes, or metapopulation extinction.

ΦG
0 = Φ0 and ΦG

∞ = Φ∞. However, the metapopulation
uMFT depends explicitly on the migration rate m and
G, with ΘG

0 ∼ 1/m and ΘG
∞ ∼ 1/m.

Under intermediate switching rate, when ν ≲ 1, the
coupling of demographic and environmental fluctuations
plays a key role, while cell migration depends on the deme
size that in turn varies with the environmental state.
Here, the metapopulation dynamics cannot be directly
related to its static counterpart. The average deme size
Nξ(ν) depends non-trivially on ν and ξ, and generally
needs to be computed by sampling long-time simulations.
However, analytical progress can be made by approx-
imating the population size distribution of an isolated
deme in the environmental state ξ by the joint probabil-
ity density pξ(ν, n) of the piecewise deterministic Markov
process (PDMP) obtained by ignoring demographic fluc-

tuations [16, 17, 84, 85], see Appendix A 2

pξ(ν, n) =


Z+

n2

(
K+−n
n

)ν−1 (
n−K−
n

)ν
if ξ = 1,

Z−
n2

(
K+−n
n

)ν (
n−K−
n

)ν−1

if ξ = −1.

(17)
The density pξ(ν, n) has support [K−,K+], and the nor-

malisation constants Z± ensure
∫K+

K−
pξ(ν, n) dn = 1.

The M/W competition characterising the intermedi-
ate switching regime dynamics can be described by the
coarse-grained representation of Sec. III 1 generalised to
a time-fluctuating environment following Refs. [16, 17,
22]. Here, we analyse the influence of ν and m on the
M fixation probability, ΦG

i (ν,m), and uMFT, ΘG
i (ν,m),

in a metapopulation consisting of i mutants demes and
Ω− i W -demes spatially arranged as a regular graph G.
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FIG. 4. Fixation probability ΦG and mean fixation time ΘG against switching rate ν for various parameters. Each panel shows
ΦG vs. ν (left) and ΘG vs. ν (right). Markers show simulation results and lines are predictions of Eq. (24). (a,b) Φclique(ν)
and Θclique(ν) for a clique metapopulation and different values of m in (a) and s in (b). (a) m = 10−5 (red), m = 10−4 (blue),
m = 10−3 (yellow), and s = 0.01. (b) s = 10−3 (red), s = 10−2 (blue), s = 10−1 (yellow), and m = 10−4. Dashed black lines
are guides to the eye showing Φ0,∞ in (a,left) and Θ0,∞ in (a,right), see text. Other parameters are Ω = 16, K+ = 200, and
K− = 20. (c) ΦG(ν) and ΘG(ν) for clique (red, crosses), cycle (blue, circles), and grid (yellow, triangles). Other parameters
are Ω = 16, K+ = 200, K− = 20, s = 0.01, m = 10−4. (d) Φclique(ν) and Θclique(ν) for a clique metapopulation with K+ = 200
(red), K+ = 500 (blue), and K+ = 1000 (yellow). Deviations occur for Θ with K+ = 1000 since the slow-migration condition
is not satisfied in the mild environment. Other parameters are Ω = 16, K− = 20, and s = 0.01, m = 10−4. In all examples,
there is initially a single M deme and Ω− 1 others of type W , see text.

To this end, we consider a birth-death process for the
number i = 0, . . . ,Ω of M demes forming an M -cluster.
As in Sec. III 1, we assume that there is initially a sin-
gle M deme (i = 1). The effective rates for increase or
decrease in size of the M -cluster, T ±

i , depend on the ex-
pected number of migrating cells, which in turn depends
on the deme size that is now a time-fluctuating quantity
driven by Eq. (5). In a time-varying environment, the
expected number of migrants from a deme, mn, is ap-
proximated by mNξ(ν), where the the long-time mean
deme size in the environmental state ξ is obtained from
the PDMP density according to

Nξ(ν) =

∫ K+

K−

npξ(ν/s, n) dn, (18)

where, as in Refs. [16–19, 23], the switching rate has been
rescaled, ν → ν/s, by the timescale of the deme fixation
dynamics, see Appendix B, where there are an average of
O(ν/s) switches on the deme fixation timescale [17, 18].

The (marginal) average deme size regardless of ξ is given
by N (ν) = 1

2

∑
ξNξ(ν) and known to be a decreas-

ing function of ν [16, 17]. As in static environments,
see Eq. (10), the transition rates T ±

i depend on the
spatial structure, via EG(i)/qG, and on the probability
ρM/W,ξ(ν) that an M/W migrant invades a W/M deme
in the environment ξ. Putting everything together, this
yields the effective transition rates

T +
i,ξ(ν,m,G) = mNξ(ν)

EG(i)

qG
ρM,ξ(ν),

T −
i,ξ(ν,m,G) = mNξ(ν)

EG(i)

qG
ρW,ξ(ν),

(19)

where, by analogy with Eq. (9), we have introduced

ρM,ξ(ν) ≡
s

1 + s

1

1− (1 + s)−Nξ(ν)
,

ρW,ξ(ν) ≡
s

(1 + s)Nξ(ν)

1

1− (1 + s)−Nξ(ν)
.

(20)
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With Eq. (19), by dropping all explicit dependence ex-
cept on i and ξ, we obtain the M fixation probability in
the environmental state ξ, denoted by ΦG

i,ξ(ν,m,K±), as
the solution of the following ν-dependent first-step anal-
ysis equation:[
T +
i,ξ + T −

i,ξ + ν
]
ΦG
i,ξ = T +

i,ξΦ
G
i+1,ξ + T −

i,ξΦ
G
i−1,ξ + νΦG

i,−ξ,

(21)
subject to the boundary conditions ΦG

0,ξ = 0 and ΦG
Ω,ξ =

1. The metapopulation uMFT in the environmental state
ξ, denoted by ΘG

i,ξ, satisfies a similar equation:[
T +
i,ξ + T −

i,ξ + ν
]
ΘG
i,ξ = 1+T +

i,ξΘ
G
i+1,ξ+T −

i,ξΘ
G
i−1,ξ+νΘ

G
i,−ξ,

(22)
with boundary conditions ΘG

0,ξ = ΘG
Ω,ξ = 0. Eqs. (21)

and (22) generalise Eqs. (11) to a time-switching envi-
ronment, with the last terms on the RHS accounting for
environmental switching, and coupling ΦG

i,ξ to ΦG
i,−ξ and

ΘG
i,ξ to ΘG

i,−ξ. Eqs. (21) and (22) can be solved numeri-
cally using standard methods. The M fixation probabil-
ity ΦG

i (ν) and uMFT ΘG
i (ν) regardless of ξ are obtained

by averaging over the stationary distribution of ξ, yield-
ing

ΦG
i (ν,m) =

1

2

∑
ξ

ΦG
i,ξ(ξ, ν,m),

ΘG
i (ν,m) =

1

2

∑
ξ

ΘG
i,ξ(ξ, ν,m),

(23)

where we have reinstated the explicit dependence on ν
and m. As we specifically consider the initial condition
of a single M deme, we set i = 1 in Eq. (23) and simplify
the notation by writing

ΦG(ν,m) = ΦG
1 (ν,m) and ΘG(ν,m) = ΘG

1 (ν,m), (24)

Eq. (24) are the expressions of theM fixation probability
and metapopulation uMFT in the realm of the combined
coarse-grained and PDMP description. This approach is
valid under slow migration rate (m ≪ 1) and weak se-
lection strength (s ≪ 1) for the assumption n ≈ Nξ(ν)
to hold at each invasion, see Appendix A 2. In Fig. 4,
the comparison of the predictions of Eq. (24) with the
simulation results of the full model on the regular graphs
G = {clique, cycle, grid} shows that (24) captures well
the dependence of ΦG and ΘG on ν,m, s andK+. In par-
ticular, Eq. (24) reproduces on all G the non-monotonic
ν-dependence of ΦG and ΘG (when it exhibits this fea-
ture), as well as their behaviour when ν → 0,∞ given by
Eqs. (14) and (16).

A striking feature of ΦG and ΘG is their dependence on
spatial migration. In Fig. 4(a,left), we indeed find that
simulation data for Φclique(ν,m) vary noticeably with
m in the range ν ∈ [10−4, 10−1]. These deviations, of
up to 20%, exceed the error bars and are reasonably
well captured by Eq. (24). In Fig. 4(c,left), we notice
that both simulation results and predictions of Eq. (24)

for ΦG(ν,m) differ slightly for each graph G, whereas
Fig. 4(c,right) shows that ΘG clearly depends on the
spatial structure. The explicit dependence of the fixa-
tion probability on migration and spatial structure is in
stark contrast with the result Eq. (12) obtained in static
environments, and is therefore a signature of the eco-
evolutionary dynamics in time-fluctuating environments.
As shown in Appendix G, the correspondence demon-
strated in Ref. [41] between ΦG and the fixation proba-
bility of a random walk for the number i = 0, 1, . . . ,Ω of
mutant demes with hopping probabilities independent of
m and G, and absorbing states 0,Ω, breaks down in time-
varying environments. This leads to the dependence of
ΦG and ΘG on m and G in time-switching environments.
Another distinctive feature of ΦG and ΘG is their non-

monotonic ν-dependence when the other parameters (s,
m, K±, Ω) are kept fixed. In particular, Fig. 4 shows that
ΦG may exhibit a sharp peak in the regime of interme-
diate ν ∈ [10−4, 10−1] that is well captured by Eq. (24).
These results are in marked contrast with their counter-
parts in a single deme, which vary monotonically with
ν [16, 17, 19]. The non-monotonic ν-dependence ΦG and
ΘG is therefore an inherent effect of spatial migration.
Intuitively, this behaviour stems, on the one hand, from
more M invasions occurring when the deme size is as
close as possible to n ≈ K+, see Eq. (19). On the other
hand, the average deme size is a decreasing function of
ν [16–18], see Appendix A 2. Therefore, optimising the
probability ofM fixation requires two considerations: the
environment should avoid remaining stuck in the harsh
environment for too long, which can happen with a prob-
ability close to 1/2 when ν ≪ 1; and the environment
should not switch too frequently (i.e. ν ≫ 1), as this re-
duces the effective deme size (n ≈ K), which can be sig-
nificantly smaller than K+. Hence, the best conditions
for the fixation of M are for a range of ν in the inter-
mediate regime. Since the uMFT is longer in the harsh
than in the mild environment (where there are fewer mi-
gration events, see Fig. 2(b)), a similar reasoning leads to
a minimum mean fixation time for ν in the intermediate
regime.

2. Strong bottlenecks: ψ(m,K−) < 1

When ψ(m,K−) < 1, each deme can undergo strong
bottlenecks, see Fig. 3(a) and below. In the harsh envi-
ronment ξ = −1 (K = K−), the entire metapopulation
experiences extinction, in an observable time θE(K−,Ω),
denoted θE here for conciseness. However, in the mild
state ξ = 1 (K = K+), deme extinction can be neglected
and each site can be regarded as being occupied by ei-
ther W or M cells. The dynamics in the harsh state is
thus dominated by extinction, whereas theM/W compe-
tition characterising the mild state is aptly captured by
the two-state coarse-grained description of Section III 1.
Environmental switching thus couples regimes that are
dominated in turn by deme extinction andM/W compe-
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FIG. 5. Typical single realisations of N/Ω (black), NM/Ω (red), NW /Ω (blue), and K(t) (grey) vs time for different values of
K− and ν. (a,b): Here, ν = 10−4 and K− = 8. In (a), K = K− at t = 0 andM and thenW quickly go extinct. In (b), K = K+

at t = 0 and M fixes the population while W goes extinct. (c,d): Here, ν = 10−2 and K− = 8. In (c), mutants survive the first
few bottlenecks but their abundance is low leading to the fixation of W and removal of M after four bottlenecks (t ≳ 1000).
In (d), mutants survive the first bottlenecks and spread in the mild state where they recolonise and invade demes. They are
eventually able to fix the population. (e,f): Here, ν = 10, and K− = 4 in (e) and K− = 10 in (f). K(t) switches very frequently
and is not shown for clarity. In (e), the deme size is n ≈ 2K− = 8 and the dynamics is dominated by deme extinction leading
to the rapid extinction of the metapopulation. In (e), the deme size is n ≈ 2K− = 20 and there is M/W competition that leads
to fixation of M and extinction of W after a typical time t ∼ θclique(2K−) ≳ 104 (not shown). Similar results are obtained on
other regular graphs G, see text. Other parameters are Ω = 10, s = 0.1, m = 10−4, and K+ = 200. In all panels, initially there
is a single M deme and Ω− 1 demes occupied by W .

tition, yielding complex dynamical scenarios whose anal-
ysis is difficult. However, we can gain valuable insight by
considering first the limits ν ≪ 1, ν ≫ 1, and then the
case of intermediate switching.

When the environment varies very slowly, ν ≪ 1, the
K(t) remains at its initial value for long periods, that
is K = K± if ξ(0) = ±1 each with a probability 1/2.
On the one hand, if initially ξ = −1 (harsh environ-
ment), K = K− and each deme is prone to extinc-
tion after a mean time τE(K−), which eventually leads
to the collapse of the metapopulation after a mMET
θE ≈ eK− ln (Ω)/K− when Ω ≫ 1 and K− ≫ 1, see
Eqs. (6) and (13) and Fig. 5(a). On the other hand,
if initially ξ = 1 (mild condition), n ≈ K+ and there
is M/W competition characterised by the fixation of M
with a probability ϕ(K+) approaching 1 when K+s≫ 1,
see Eq. (12) and Fig. 5(b). As a result, when ν ≪ 1 and
K+s ≫ 1, there are two equally likely outcomes illus-
trated in Fig. 5: either the extinction of the metapopu-

lation in a mean time θE as in Fig. 5(a), or the fixation
of M after a mean time θG(K+) as in Fig. 5(b).

In frequently varying environments, when ν ≫ 1, the
size of each deme readily settles about the effective car-
rying capacity Eq. (15), with n ≈ K after t ∼ 1 [16, 17].
Since K ≈ 2K− when K+ ≫ K−, if ψ(m, 2K−) < 1 the
dynamics is characterised by the extinction of individual
demes and then of the entire metapopulation after mean
times τE(2K−) and θE(Ω, 2K−), see Fig. 5(e). However,
if ψ(m, 2K−) ≫ 1 and 2K−s≫ 1, the dynamics is char-
acterised by M/W competition with M most likely to
fix the metapopulation after a mean time θG(2K−), as
illustrated by Fig. 5(f).

In slowly and rapidly changing environments, regard-
less of the spatial structure, the metapopulation subject
to strong bottlenecks is therefore always at risk of either
complete extinction or of being taken over by mutants.

In the intermediate switching regime, ν ≲ 1 with
ψ(m,K−) < 1, the metapopulation experiences strong
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FIG. 6. Near-optimal condition for the idealised treatment. (ν,K−) heatmaps of Φ, Θ, ΘE and (1−Φ)(1−Θ/ΘE) for a clique
metapopulation. The migration rate is m = 10−3 in (a-d) and m = 10−4 in (e-h). Whitespace in panels (c) and (g) indicate
where at least one realisation for those parameters did not reach extinction by t = 105, i.e. ΘE ∼ 105 or larger. Grey lines in
panels (d) and (h) show the near-optimal conditions for the idealised treatment: ψ(m,K−) < 1 below the top horizontal line,
mK+θE > 1 above the bottom horizontal line, and νθE > 1 above the curved line, while the vertical line indicates where ν < 1
and θE from Eq. (13). The near-optimal treatment conditions is the yellowish cloud at the centre of the area enclosed by these
lines. Similar results are obtained on other regular graphs G, see text and Fig. 10. Other parameters Ω = 16, s = 0.1, and
K+ = 200. In all panels, initially there is a single M deme and Ω− 1 demes occupied by W .

bottlenecks, can avoid extinction for extended periods
of time, and either strain can prevail. In the harsh
environmental state (K = K−), the dynamics is al-
ways dominated by deme extinction. In the mild state
(K = K+ ≫ K−), there is recolonisation of empty demes
that rapidly become either W or M demes, followed by
invasions andM/W competition. In order to ensure that
the collapse of the metapopulation is unlikely to be ob-
served, the mean time spent in either environmental state
needs to be shorter than the metapopulation mean ex-
tinction time in the harsh environment, i.e. 1/ν < θE .
Moreover, when ν ∼ 1/τE(K−) > 1/θE , numerous demes
go extinct in the harsh environment before switching
to the mild state. Hence, when ν ≲ 1 and νθE > 1,
the metapopulation is unlikely to go extinct and tran-
siently consists of a mixture of empty demes and W/M
demes before either W or M eventually takes over. In
this regime, mutants are likely to be removed from the
metapopulation when there is a small fraction of them
in the harsh environment, see Fig. 5(c). At each strong
bottleneck, M demes have a finite probability to go ex-

tinct before switching to the mild environment, where
surviving mutants can invade W demes and recolonise
empty demes. In a scenario illustrated by Fig. 5(c), there
are periods of duration ∼ 1/ν during which the number
of mutants remains low and prone to extinction when
K = K−, followed by periods in K+ where the number
of M demes increases (due to M/W competition). Each
bottleneck can thus be regarded as an attempt to remove
M demes, whereas each switch K− → K+ can be envi-
sioned as a rescue of mutants. This cycle repeats itself
until M demes are entirely removed after enough bottle-
necks. The metapopulation thus consists of a fluctuating
number of W demes and empty demes. This scenario
is the most likely to occur when the initial fraction of
M demes is small. Another possible outcome, illustrated
by Fig. 5(d), occurs when mutants surviving the harsh
conditions invade and are successful in recolonising many
demes in the mild environment. Mutants can thus signif-
icantly increase the number of M demes, exceeding that
of W demes. In this case, bottlenecks can be seen as at-
tempt to remove W and M demes, and the most likely
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outcome is the removal ofW demes. In this scenario, the
metapopulation eventually consists of a fluctuating num-
ber of empty demes and mutant demes, as illustrated by
Fig. 5(d). The results of Fig. 5 have been obtained for
cliques, but the same qualitative behaviour is expected
for any regular graphs G, with the spatial structure af-
fecting the the long-term fraction of occupied demes and
therefore the probability of removal of each bottleneck.
However, phenomena operated by extinction are mostly
independent of G and m, as illustrated by Fig. 10.
A hypothetical idealised treatment: In this intermediate

switching regime, the metapopulation is likely to avoid
extinction in the harsh environment if νθE ≳ 1. More-
over, when mK+θE ≳ 1 enough demes are recolonised in
the mild environment to ensure that the metapopulation
will not readily go extinct after a bottleneck. Hence,
the metapopulation is likely to avoid extinction when
νθE > 1 and mK+θE > 1 and either W or M can be en-
tirely removed, with respective probabilities Φ and 1−Φ,
after a mean time Θ, whereas the mMET in the time-
fluctuating environment, ΘE , occurs on a much longer
timescale (ΘE ≫ Θ). As an application, we consider
a hypothetical idealised treatment to efficiently remove
deleterious mutants from an otherwise healthy system by
controlling the environmental conditions via the param-
eters K− and ν. In this context, M cells are interpreted
as deleterious mutants that have a selective advantage
over healthy W cells composing an organism, here repre-
sented by the metapopulation consisting initially of Ω−1
demes of type W and a single M deme. Small num-
bers of pathogenic cells, as few as 10 for some strains of
Salmonella and Shigella [86, 87], can cause illness and
so these initial conditions are relevant, even for smaller
systems. The idealised treatment consists of finding the
set of near-optimal environmental conditions to remove
M cells and minimise the risk of extinction of the entire
metapopulation. This corresponds to determining the
range of K− and ν for which Φ and Θ/ΘE are minimal.
According to the above discussion, the near-optimal con-
ditions for this idealised treatment on a regular graph G
are

ψ(m,K−) < 1, ν ≲ 1, νθE ≳ 1, mK+θE ≳ 1.
(25)

Under these conditions, illustrated in Fig. 6, which de-
pend on m but not on the spatial structure G, environ-
mental variability generates a succession of strong bot-
tlenecks at a frequency ensuring that the mutant type is
the most likely to go extinct in a mean time that is much
shorter than the metapopulation mean extinction time.
While determining analytically Φ and Θ/ΘE satisfying
Eq. (25) is challenging, this can be done efficiently nu-
merically as illustrated by the heatmaps of Fig. 6, and
be summarised by maximising the composite quantity
(1 − Φ) (1−Θ/ΘE), as shown in Fig. 6(d,h). In the ex-
amples of Fig. 6, we find that the near-optimal treatment
conditions are 10−2 ≲ ν ≲ 1 and for K− that changes
with m: K− ∈ [2, 7] for m = 10−3 and K− ∈ [4, 9] for
m = 10−4. The idealised treatment therefore consists

of letting the metapopulation evolve under the near op-
timal conditions Eq. (25), under which it undergoes a
series of strong bottlenecks whose expected outcome is
the removal of mutants. Once all mutants are removed,
as in Fig. 5(c), the final course of the treatment consists
of keeping the metapopulation in the mild environment
(with K = K+), where W cells would spread and finally
take over all the demes. In the example of Fig. 5(c), this
would be achieved by setting K = K+ after t ≳ 1000.
This idealised treatment, illustrated for clique metapop-
ulations in Fig. 6, qualitatively holds on regular graphs
G, with small influence of the spatial structure on the
shape of the heatmap when m is kept fixed, as seen by
comparing Figs. 6(e-h) and 10.

V. DISCUSSION, GENERALISATIONS AND
ROBUSTNESS

Here, we discuss our main results by critically re-
viewing our assumptions and outline possible generali-
sations. We have studied the eco-evolutionary dynam-
ics of a metapopulation consisting of Ω identical demes
with the same carrying capacity K, containing wild-type
W and mutant M cells, that are connected by slow mi-
gration and arranged according to regular circulation
graphs. While our approach holds for any regular graph,
we have specifically considered the examples of cliques
(island model), cycles, and square grids (with periodic
boundaries) which are all circulation graphs, i.e. the
rate of in-flow and out-flow migration is the same at each
deme. This has allowed us to consider the effect of both
weak and strong local correlations arising respectively in
clique and cycle metapopulations. We have analysed the
metapopulation dynamics in a static environment where
K is constant, and in a time-varying environment where
K switches endlessly between K+ and K− < K+ at a
rate ν, see Eq. (5). In static environments, the deme
size fluctuates about K and the metapopulation dynam-
ics is characterised by either M/W competition (when
ψ ≫ 1), or by deme extinction (when ψ < 1). We
have used suitable coarse-grained descriptions to ana-
lytically characterise the fate of the population in those
regimes, see Fig. 2. When, as here, the metapopulation is
spatially arranged on circulation graphs, the circulation
theorem [41, 47] guarantees that the fixation probability
in the competition-dominated regime is independent of
the migration rate and the spatial structure. We have
also devised a coarse-grained three-state description of
the dynamical equilibrium in the crossover regime (where
ψ ≳ 1) where in the long run there is a mixture of occu-
pied demes of typeW orM and empty demes, see Sec. F.
In time-fluctuating environments, when K switches nei-
ther too quickly nor too slowly, each deme is subject to
bottlenecks that can be weak when K− is large enough to
ensure ψ(m,K−) ≫ 1. Deme extinction can be neglected
in the weak bottleneck regime, and we have combined a
coarse-grained description with a PDMP approximation
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to characterise the W/M competition in time-varying
environments in the absence of deme extinction. This
has allowed us to show that weak bottlenecks lead to a
non-monotonic dependence of the mutant fixation prob-
ability ΦG and mean fixation time ΘG on the switch-
ing rate ν, with an explicit dependence on the migration
rate, whereas the spatial structure has an unnoticeable
effect on ΦG, regardless of spatial correlations, but influ-
ences ΘG. When demes are subject to strong bottlenecks,
metapopulation extinction is a likely outcome under slow
and fast switching (ν ≪ 1 and ν ≫ 1), whereas the over-
all extinction can be avoided for long periods under in-
termediate switching, whenW/M competition and deme
extinction dynamics are coupled. As a hypothetical ap-
plication, we have considered an idealised treatment for
the rapid removal of the mutant conditioned on minimis-
ing the risk of overall extinction.

The coarse-grained descriptions adopted in the static
and dynamic environments track the dynamics of a sin-
gle unbreakable cluster of M demes (M -cluster). This
requires starting from such a cluster, where here we as-
sumed the natural initial condition of a single M deme.
Other starting configurations are also possible (e.g. two
or more neighbouring M demes) provided that the un-
breakable structure of the M -cluster is preserved at all
times t ≥ 0. For the sake of concreteness and simplicity,
we have focused on a class of regular circulation graphs.
As the number of active edges connecting W and M
demes in cliques and cycles is known exactly, these graphs
are particularly amenable to detailed analysis. In two
dimensions, spatial correlations between demes are more
complex, and the coarse-grained description of theM/W
competition dynamics on a grid has required approxima-
tions of the the number of active edges, see Appendix E.
A similar approximation is expected to hold on hyper-
cubic lattices (with periodic boundaries). These consid-
erations on the role of the initial condition and spatial
structure do not matter when the metapopulation dy-
namics is dominated by the extinction of demes since
these occur randomly. As a consequence, the “idealised
treatment” method based on the dynamic coupling of
competition and deme extinction to remove a targeted
strain is expected to hold on more complex structures,
including generic regular graphs.

In this work, we have focused on the biologically rel-
evant regime of slow migration, which is well known to
increase the population fragmentation and hence influ-
ences its evolution and diversity [61, 88]. Here, the
assumption of slow migration is crucial for the coarse-
grained description of the metapopulation dynamics, and
the values considered in our examples, m ≈ 10−5 − 10−2

(see Appendix B), are comparable with those used in
microfluidic experimental setups [63]. For m ≫ 1, the
behaviour of a single well-mixed deme is recovered, see
Ref. [16]. For intermediate m, the dynamics is charac-
terised by coarsening, i.e. the slow growth of domain
sizes over time [89, 90]. For the sake of simplicity and
without loss of generality, we have assumed that migra-

tion occurs without any directional preference and with
the same rate for M and W . These assumptions can
be relaxed and the coarse-grained description be readily
generalised to the case of directional and type-specific mi-
gration [51], yielding the same qualitative behaviour dis-
cussed here for circulation graphs. We note however that
asymmetric directional migration significantly affects the
evolutionary dynamics on non-circulation graphs, like the
star [41, 42, 50, 54]. It would be interesting to study
the evolution on these non-circulation graphs in time-
varying environments in the case of symmetric and di-
rectional migration. For computational tractability, we
have chiefly considered metapopulations consisting of 16
demes of size ranging between 1 and 200, which are much
smaller systems than most realistic microbial communi-
ties. However, we note that with microfluidic devices
and single-cell techniques, it is possible to perform spa-
tially structured experiments with 10 to 100 cells per
microhabitat patch, which are conditions close to those
used in our model [63, 91, 92]. Moreover, in-vivo host-
associated metapopulations are often fragmented into a
limited number of relatively small demes, e.g. Ω ≈ 25
and K ≈ 1000 in mouse lymph nodes [60, 93, 94].
Here, we have conveniently represented environmen-

tal variability by the random switching of the carrying
capacity K = {K+,K−} driven by a symmetric dichoto-
mous Markov noise (DMN), with the extension to asym-
metric DMN outlined in Appendix H. DMN is commonly
used to model evolutionary processes because it is sim-
ple to simulate and analyse, and closely reproduces the
binary conditions used in many laboratory-controlled ex-
periments. These are typically carried out in periodically
changing environments [79, 95, 96]. It has however been
shown that letting K vary periodically between K+ and
K− with a period 1/(2ν) leads to essentially the same
dynamics [18]. Moreover, the relationship between DMN
used here and other common forms of environmental
noise has been extensively studied [18, 19, 69, 70], show-
ing that DMN is a convenient and non-limiting choice to
model environmental variability.

VI. CONCLUSIONS

Cells evolve in spatially structured settings, where the
competition with those nearby is stronger than those
further afield, subject to never-ending environmental
changes. Spatial structure and environmental variability
impact the eco-evolutionary dynamics of microbial pop-
ulations significantly, but their joint influence is scarcely
considered. Mutations frequently arise in cell communi-
ties and some may have deleterious effects, e.g. causing
the rise of resistance to antibiotics [21, 30–32]. Moti-
vated by these issues, and inspired by recent advances
in microfluidics allowing experiments to track dynamics
at the single-cell level [63, 91, 92], we have investigated
the prototypical example of a rare mutant having a selec-
tive advantage over wild-type resident cells occupying a
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spatially structured population in time-fluctuating envi-
ronments. Here, we have considered a class of metapop-
ulation models spatially arranged as regular (circulation)
graphs where cells of wild and mutant types compete in a
time-fluctuating environment. The metapopulation con-
sists of demes (subpopulations) with the same carrying
capacity, connected to each other by slow cell migration.
We represent environmental variability by letting the car-
rying capacity endlessly switch between two values asso-
ciated to harsh and mild conditions. In this framework,
we have studied how migration, spatial structure, and
fluctuations influence the probability and time for the
mutant or wild-type to take over the metapopulation,
and under which conditions extinction of demes and the
entire metapopulation occurs. This allows us to identify
when environmental variability coupled to demographic
fluctuations can be utilised to remove the mutant.

We have first considered the case where demes fluc-
tuate about a constant carrying capacity in static envi-
ronments. We have thus characterised analytically and
using stochastic simulations a regime dominated by the
competition between the mutants and wild-type cells,
another one where there is deme extinction, as well as
a crossover regime combining local competition and ex-
tinction. In time-varying environments, various quali-
tatively different dynamical scenarios arise and environ-
mental fluctuations can significantly influence the evolu-
tion of metapopulations. When the rate of switching is
neither too slow nor too fast, demes experience bottle-
necks and the population is prone to fluctuations or ex-
tinction. When the fluctuating carrying capacity remains
large and bottlenecks are weak, deme extinction is negli-
gible. The dynamics is thus dominated by the competi-
tion between wild-type cells and mutants to invade and
take over demes, and eventually the population, which
we characterise by devising a suitable coarse-grained de-
scription of the individual-based model when migration
is slow. This allows us to determine the fixation prob-
ability and mean fixation time by combining analytical
and computational tools, and to show that these quan-
tities can vary non-monotonically with the environmen-
tal switching rate. We find that in the regime of weak
bottlenecks, the mutant fixation probability on regular
circulation graphs depends on the migration rate, which
is in stark contrast with what happens in static envi-
ronments, while the spatial structure has no noticeable
influence. When the carrying capacity is small under
harsh conditions, bottlenecks are strong and there is a
dynamical coupling of strain competition in the mild en-
vironmental state and deme extinction in the harsh en-
vironment. This yields rich dynamical scenarios among
which we identify a mechanism, expected to hold on any
regular graph, driven by environmental variability and
fluctuations to efficiently eradicate one strain. As a hypo-
thetical application, we have thus proposed an idealised
treatment to remove the mutant, assumed to be deleteri-
ous and favoured by selection. We have shown that when
each deme is subject to strong bottlenecks at a certain

intermediate switching rate the mutant can be efficiently
removed by demographic fluctuations arising in the harsh
environment without exposing the entire population to a
risk of rapid extinction. We have thus determined the
near-optimal conditions on the switching rate and bot-
tleneck strength for this idealised treatment and found
that these are qualitatively the same on other graphs.
In summary, our analysis sheds further light on

the influence of the spatial structure, migration, and
fluctuations on the spread of a mutant strain in time-
fluctuating environments. We have identified and
characterised various dynamical scenarios, displaying
a complex dependence on the switching and migration
rates. We have also shown how environmental variability
and fluctuations can be utilised to achieve desired
evolutionary outcomes like the efficient removal of a
deleterious mutant. While we have made a number of
simplifying assumptions, allowing us to make analytical
progress, many of these can be relaxed without affecting
the results or the methodology. Our approach holds for
arbitrary regular graphs and can be generalised to more
complex spatial settings. We therefore believe that the
model studied here has numerous potential applications.
For instance, it mirrors the in vitro evolution of a
mutant across an array of microfluidic devices, where
cells migrate between “microhabitat patches” either via
microchannels or pipette, with bottlenecks implemented
via a strict control of the nutrient level in each device.

Data availability statement: The data and codes that
support the findings of this study are openly available at
the following URL/DOI: 10.5518/1660 [97].
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Appendix A: Further details on the model

In this section, we provide further details on the
model by discussing the master equation encoding its
individual-based dynamics, and give further details of
the size distribution of a single deme.

1. Master equation

As discussed in Sec. II, the individual-based model is
a continuous-time multivariate Markov process defined
by the reaction and transition rates Eq. (1)-(4). The
intra and inter-deme dynamics is encoded in a master
equation for the probability P ({nW , nM}, ξ, t) that at
time t the metapopulation is in the environmental state ξ
and configuration {nW , nM} ≡ (. . . , nW (x), nM (x), . . . ),
where nW/M (x) denotes the number of cells of typeW/M
in deme x = 1, . . . ,Ω. The master equation (ME) for
the metapopulation dynamics subject to environmental
switching on a regular graph G = {clique, cycle, grid} of
degree (or number of nearest neighbours)

qG =


Ω− 1, G= clique

2, G= cycle

4, G= grid,

(A1)

reads:

∂P ({nW , nM}, ξ, t)
∂t

=

Ω∑
x=1

∑
α

[ (
E−
α (x)− 1

)
T−
α (x)P ({nW , nM}, ξ, t) +

(
E+
α (x)− 1

)
T+
α (x)P ({nW , nM}, ξ, t)

]
+

1

2

Ω∑
x=1

∑
y n.n. x

[ (
E+
W (y)E−

W (x)− 1
)
Tm,GW (x) +

(
E+
W (x)E−

W (y)− 1
)
Tm,GW (y)

]
P ({nW , nM}, ξ, t)

+
1

2

Ω∑
x=1

∑
y n.n. x

[ (
E+
M (y)E−

M (x)− 1
)
Tm,GM (x) +

(
E+
M (x)E−

M (y)− 1
)
Tm,GM (y)

]
P ({nW , nM}, ξ, t)

+ ν [P ({nW , nM},−ξ, t)− P ({nW , nM}, ξ, t)] ,
(A2)

where y n.n. x denotes the sum over the qG neigh-
bours y of the deme x and P (. . . ) = 0 whenever
any of T±

α or Tm,Gα is negative. The shift opera-
tors E±

α (x) act by raising of decreasing by one the
number of cells of type α in deme x. For exam-
ple, E±

W (x)[nW (x)P (. . . , nW (x), nM (x) . . . , ξ, t)] =
(nW (x) ± 1)P (· · · , nW (x) ± 1, nM (x) · · · , ξ, t) and
E±
M (x)[nW (x)P (· · · , nW (x), nM (x) · · · , ξ, t)] =

nW (x)P (· · · , nW (x), nM (x) ± 1 · · · , ξ, t). The first
line on the right-hand-side (RHS) of Eq. (A2) encodes
the inter-deme birth-death dynamics, the second and
third lines represent the intra-dynamics via inward
and outward migration, and the last line accounts for
symmetric random environmental switching. Here, the
ME has specifically been formulated in the presence
of environmental switching, but its static-environment
counterpart is readily obtained from A2: it suffices to
set ν = 0 and to replace K(t) by a constant carrying
capacity K, yielding the ME for P ({nW , nM}, t) that
is the probability to find the metapopulation in a
given state {nW , nM} at time t (with no environmental
dependence). Moreover, by setting Ω = 1 and m = 0 in

Eq. (A2), the second and third lines on the RHS cancel,
we obtain the ME encoding the inter-deme dynamics of
a single isolated deme [16, 17].

While the ME Eq. (A2) holds for any regular graphs
G, in our examples we consider specifically the regu-
lar circulation graphs G = {clique, cycle, grid}. The
space-dependent individual-based dynamics encoded in
the ME Eq. (A2) has been simulated using the Monte
Carlo method described in Section I. It is worth not-
ing that demographic fluctuations eventually lead to the
extinction of the entire metapopulation, in all regimes.
However, this phenomenon occurs after a time growing
dramatically with the system size, and it can generally
not be observed in sufficiently large metapopulations, see
Fig. 2(f,g).

2. Eco-evolutionary dynamics of a single deme

Since the metapopulation consists of a graph of con-
nected demes, all with the same carrying capacity, we
can gain significant insight into its dynamics by looking
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into its building block. In this section, we therefore anal-
yse the eco-evolutionary dynamics of single isolated deme
(when m = 0).
For an isolated deme, there is only intra-deme dy-

namics according to the birth-death process defined by
Eqs. (1) and (2). The ME for the dynamics of a sin-
gle isolated deme is thus given by setting Ω = 1 and
m = 0 in Eq. (A2), see Appendix A 1. The corresponding
intra-deme dynamics in a time-varying environment can
thus be simulated using exact methods like the Gillespie
algorithm [98], as in Refs [16–18, 20–24]. It is instruc-
tive to ignore all forms of fluctuations and consider the
mean-field approximation of an isolated deme dynamics
subject to a constant carrying capacity K ≫ 1. Follow-
ing Refs. [16, 17], with the transition rates Eq. (2), the
mean-field eco-evolutionary dynamics of a single isolated
deme is characterised by rate equations for the size n of
the deme and the fraction x = nM/n of mutants in the
deme, which read:

ṅ =
∑
α

T+
α −

∑
α

T−
α = n

(
1− n

K

)
,

ẋ =
T+
M − T−

M

n
− x

ṅ

n
=
sx(1− x)

1 + sx
,

(A3)

where the dot indicates the time derivative and we have
used fM = 1 + s and fW = 1. These decoupled rate
equations predict the quick relaxation of the deme size
towards the constant carrying capacity, with n → K on
a timescale t ∼ 1, and the growth of the fraction of mu-
tants, with x → 1 on a timescale t ∼ 1/s. In the total
absence of fluctuations, when 0 < s ≪ 1 (small selective
advantage toM), in the mean-field picture, the deme size
quickly approaches the carrying capacity and there is a
timescale separation between n and x, respectively the
fast and slow variables. W cells are thus slowly wiped
out by mutants that take over the deme on a timescale
t ∼ 1/s ≫ 1 [16, 17]. It is worth noting that with the
effective transition rates Eq. (19) we have assumed that
invasions always occur after deme size and composition
relaxation. This means that Eqs. (23) and (24) assume
a timescale separation between n and x and x and the
number of M demes.
It is also relevant to consider the intra-deme dynamics

of a single isolated site subject to a finite constant carry-
ing capacity K. As explained in Appendix B, the intra-
deme dynamics can be well approximated by a Moran
process for a deme of constant size n = K [7, 16, 17, 64–
66], and characterised by the fixation probability and
mean fixation time given by Eq. (B3). The probabil-
ity ρM/W (K) that a single M/W cell takes over a W/M
deme of size K is given by Eq. (9).

When demographic fluctuations can be neglected and
randomness only arises from enviromental variability via
Eq. (5), the intra-deme dynamics of an isolated deme is
well-captured by the piecewise deterministic Markov pro-
cess (PDMP) for n, obtained by ignoring demographic
fluctuations [16, 17, 84]. In the realm of the PDMP ap-
proximation, the deme size thus satisfies a deterministic

logistic equation in each environmental state, subject to
a carrying capacity that switches when the environment
changes (K = K± when ξ = ±1), yielding the following
n-PDMP [16–18, 21, 22, 32]:

ṅ =

n
(
1− n

K−

)
if ξ = −1,

n
(
1− n

K+

)
if ξ = 1,

(A4)

that is decoupled from the mean-field equation for x that
is as in Eq. (A3). The stationary joint probability density
of this n-PDMP is given by Eq. (17) [17, 18], while the
marginal probability density is

p(ν, n) =
1

2

∑
ξ

pξ(ν, n) =
Z
n2

[(
K+

n
− 1

)(
1− K−

n

)]ν−1

,

(A5)
where Z is the normalisation constant and n ∈ [K−,K+].
Despite ignoring the effect of demographic noise, p(ν, n)
aptly captures many properties of the quasi-stationary
distribution of the size of an isolated single deme [17, 18].
For instance, the long-time average deme size is accu-

rately approximated by N (ν) =
∫K+

K−
np(ν, n)dn, and is a

decreasing function of ν [16, 17]. As illustrated by Fig. 7,
the density p(ν, n) correctly predicts that the deme size
distribution is bimodal when ν < 1 and unimodal when
ν > 1, and that it is peaked at n ≈ K± when ν ≪ 1 (slow
switching) and centred around n ≈ K when ν ≫ 1 (fast
switching), see Eq. (15). The joint and marginal PDMP
probability densities Eq. (17) and Eq. (A5) provide valu-
able insight into the deme size distribution when these
are subject to weak bottlenecks and their extinction can
be neglected [16–19, 21, 22, 32].
While pξ(ν, n) and p(ν, n) give a PDMP description of

the quasi-stationary distribution of the size of an isolated
deme (m = 0), the n-PDMP stationary densities (17)
and (A5) are still a valid approximations of the long-
time size distribution of n in the presence of migration
as considered here. In fact, as shown below in Fig. 7, the
influence of migration on the distribution of the deme
size is essentially unnoticeable, and its main features are
therefore well captured by Eq. (17) and Eq. (A5).
In the main text, we have used the PDMP approxi-

mation to describe the size distribution of a single iso-
lated deme subject to symmetric random switching of its
carrying capacity Eq. (5). Here, we show that spatial
migration has no noticeable influence on the size distri-
bution of a single deme of a metapopulation structured
as a regular circulation graph G = {clique, cycle, grid}.
To this end, in Fig. 7, we compare the size distribution of
a single deme in a metapopulation structured as a regular
G-graph in the presence of a migration per capita rate
m = 10−3 (obtained from stochastic simulations) with
the predictions of Eq. (17). These results illustrate that
migration has no noticeable effect on the deme size distri-
bution that can approximated by PDMP density Eq. (17)
(or Eq. (A5)) in the absence and presence of migration
on any graph G = {clique, cycle, grid}
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FIG. 7. Quasi-stationary probability density of deme population size (n-QPD) distribution for various parameters and its
n-PDMP approximation by (17) and (A5). Red and blue bars show data for the n-QPD conditioned on K(t) = K− and
K(t) = K+, respectively. Red, blue, and black solid lines are the n-PDMP stationary densities p−(ν, n), p+(ν, n), and p(ν, n),
respectively, given by Eqs. (17) and (A5). (a-c) are for clique, (d-f) for cycle, and (g-i) for grid metapopulations. We have
ν = 10−3 in (a,d,g), ν = 10−1 in (b,e,h), and ν = 102 in (c,f,i). Other parameters are Ω = 16, m = 10−3, K+ = 200, and
K− = 20. All represent a single realisation tracked until t = 105.

As a consequence, the deme size distribution of any
metapopulation considered here is well approximated by
the joint and marginal PDMP densities p(±, ν, n) and
p(ν, n), given by Eq. (17) and Eq. (A5).
Intuitively, this can be understood by noticing that the

spatial structures considered here are circulation graphs,
yielding the same inward and outward migration flow at
each deme, and each deme has the same carrying capac-
ity. As a consequence, the average number of cells per
deme is expected to be independent of migration. The
latter remains well captured by p(±, ν, n) and p(ν, n) on
all spatial structures considered here, as seen in Fig. 7.

Appendix B: Deme invasion and slow migration

In this section, we analyse the process of invasion of
a single deme subject to a constant carrying capacity K
when ψ(m,K) ≫ 1, see Sec. III 1. In this competition-
dominated regime, the extinction of demes can be ne-
glected and their size rapidly fluctuated about K, see
Fig. 1(a). In this scenario, we can assume that the deme
size is constant n(x) = K, and describe the deme dy-

namics by tracking the number of mutants nM and wild-
type cells nW in the deme x. The deme composition
(nM , nW ) = (nM ,K − nM ) thus changes according to
the Moran process [7, 64–66]

(nM , nW )
T +
Mo−→ (nM + 1, nW − 1),

(nM , nW )
T −
Mo−→ (nM − 1, nW + 1), (B1)

where the transition rates are defined in terms of T±
M/W ,

given by Eq. (2), according to [16, 17, 21, 22]

T +
Mo(nM ) =

T+
MT

−
W

K
=
fM

f

nMnW
K

=
fM

f
nM

(
1− nM

K

)
,

T −
Mo(nM ) =

T−
MT

+
W

K
=
fW

f

nMnW
K

=
fW

f
nM

(
1− nM

K

)
.

(B2)

These transition rates correspond to the the effective
rates of increase and decrease in the number of M in
a deme of size K. This Moran process conserves the
deme size by accompanying each birth of anM/W by the
simultaneous death of a W/M , and is characterised by
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the absorbing states (nM , nW ) = (K, 0) (M deme) and
(nM , nW ) = (K, 0) (W deme). The M fixation probabil-
ity ϕMo and unconditional mean fixation time (uMFT)
θMo for this Moran process are classical results, and when
there are initially i cells of type M , they read [7, 65–67]

ϕMo(i) =
1− γiMo

1− γKMo

,

θMo(i) = ϕMo(i)

K−1∑
n=i

n∑
l=1

γn−lMo

T +
Mo(l)

− (1− ϕMo(i))

i−1∑
n=1

n∑
l=1

γn−lMo

T +
Mo(l)

,

(B3)

where γMo ≡ T −
Mo/T

+
Mo = fW /fM = 1/(1 + s). The

fixation probability of a single mutant (i = 1) and of a
singleW cell (i = K−1) are particularly relevant for our
purposes, and explictily read

ρM ≡ ϕMo(1) =
s

1 + s

[
1

1− (1 + s)−K

]
,

ρW ≡ 1− ϕMo(K − 1) =
s

(1 + s)K

[
1

1− (1 + s)−K

]
.

(B4)
In the competition-dominated regime, 1/s sets the

timescale of deme dynamics, see Eqs. (A3). The
growth of the cluster of i mutant demes in time 1/s is
T+(m,G,K)/s = mKEG(i)ρM/(qGs). In the adopted
coarse-grained description, slow migration is the regime
where the invasion can be regarded as being instanta-
neous, with fixation of a successful M invader occurring
before the next invasion. This requires that the aver-
age number of successful M invaders in the time for the
on-deme dynamics is less than one, T+(m,G,K)/s < 1,
leading to the following condition for slow migration:

m <
sqG

KρMEG(i)
<

s

KρM
, (B5)

where we have used qG/EG(i) ≤ 1. When s ≪ 1 and
Ks≫ 1, we have ρM ∼ s and therefore simplym < 1/K.
For Ω = 16,K = 100 and s = 0.1, we can estimate that
there is slow migration if m ≲ 10−2, which is in line with
the values of m ∈ [10−5, 10−2] used in our examples, and
matches where we see deviations in Fig. 2(d).

Appendix C: Deme and metapopulation mean
extinction times

In this section, we discuss the process of extinction of
a single deme that has a constant carrying capacity K
when ψ(m,K) ≪ 1, see Sec. III 2. In this extinction-
dominated regime, we can assume that the deme size
rapidly fluctuates about K, and extinction occurs from
a deme of constant size n(x) = K prior to any invasion.
Without loss of generality (see below), we hence assume
that extinction occurs from entirely occupied demes, with

FIG. 8. θE vs. metapopulation size Ω for K = 7 (yellow),
K = 5 (blue), K = 3 (red) and m = 10−4. Markers are
simulation results and lines are predictions of Eq. (C4) for
cliques (solid lines / crosses), cycles (dashed lines / circles),
and grids (dotted lines / triangles). Markers of the same
colour are almost indistinguishable. Deviations occur due to
the approximation of τE(K) in Eq. (C2). Selection plays no
role in this regime, so results have been obtained with s = 0.

the metapopulation consisting only of W and M demes,
all of size K. In this representation, the dynamics of a
W/M deme when ψ ≪ 1 is given by the birth-death pro-
cess of Sec. II with transition rates T+

W/M = nW/M and

T−
W/M = n2W/M/K, subject to an absorbing boundary at

nW/M = 0, see Eq. (2). Clearly therefore, the deme dy-
namics is independent of its type, and the deme mean
extinction time (dMET) is the average time to reach
nW/M = 0 and is the same for W and M demes (dMET
is independent of s). A classical calculation yields (see,
e.g. Sec. 6.7 in Ref. [71]) yields the following expression
for an initially fully occupied deme of size K:

τE(K) =

K−1∑
n=0

(
n!

Kn

∞∑
i=n+1

1

i

Ki

i!

)
. (C1)

The leading contribution to this expression arises from
the term n = 0: τE(K) ≃

∑∞
i=1K

i/(i · i!). This expres-
sion, corresponding to the dMET of a deme initialised
with a single cell (of either type), is a good approxima-
tion of Eq. (C1) which indicates that the dMET is inde-
pendent of selection and initial condition (for the leading
order of τE). We can further simplify the leading contri-
bution to the dMET by writing

τE(K) ≃
∞∑
n=1

Kn

n!

∫ 1

0

tn−1dt,

=

∫ 1

0

1

t

∞∑
n=1

(Kt)n

n!
dt,

=

∫ K

0

eu − 1

u
du,
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where we have used u = Kt. The main contribution to
the last integral stem from the upper bound, yielding

τE(K) ≃ eK

K
. (C2)

The dMET hence increases almost exponentially with K,
is independent of the deme type, and its initial state.

The metapopulation mean extinction time (mMET)
in the regime ψ(m,K) ≪ 1 can be obtained analytically
within the realm of the above coarse-grained description,
in the spirit of the approach of Ref. [59] for cliques. The
metapopulation thus consists initially of entirely occu-
pied demes (i mutant demes and Ω − i type W demes).
Since deme extinction here occurs prior to any invasion,
we describe the metapopulation dynamics in terms of the
number j = 0, 1, . . . ,Ω of entirely occupied demes. Resi-
dents (of either W or M type) of these filled demes can
recolonise a neighbouring empty site at a rate B(j), see
Fig. 1(d). In addition, each occupied deme goes extinct
at a rate D(j). This coarse-grained description of the
metapopulation dynamics is therefore a birth-death pro-
cess with an absorbing state j = 0 corresponding to the
eventual extinction of the metapopulation, and a reflect-
ing boundary at j = Ω (all demes are occupied). In this
picture, proceeding as above [71], the mMET reads

θE(K,Ω) =

Ω−1∑
n=1

(n−1∏
m=1

B(m)

D(m)

)
Ω∑
j=n

∏j
l=1

B(l)
D(l)

D(j)

 . (C3)

In the vein of Ref. [59] the recolonisation-birth rate of
occupied demes is B(j) = mKj(1− j/Ω), corresponding
to a logistic growth with a rate proportional to the the
expected number of migrations from an occupied deme
mK. Here, the extinction rate is D(j) = j/τE and is
inversely proportional to the mean local extinction time,

that is the dMET. With ψ = mKτE , using
∏j−1
l=n(1 −

l
Ω ) =

1
Ωj−n

(Ω−n)!
(Ω−j)! , Eq. (C3) can be rewritten as

θE(K,Ω) = τE(K)

Ω∑
n=1

Ω∑
j=n

1

j

(
ψ

Ω

)j−n
(Ω− n)!

(Ω− j)!
. (C4)

In the extinction-dominated regime ψ ≪ 1, the main
contribution to the inner sum stems from j = n, and the
leading contribution to the mMET is therefore

θE(K,Ω) ≈ τE(K)

Ω∑
n=1

1

n
= τE(K)HΩ, (C5)

where HΩ is the Ω-th harmonic number. Asymptot-
ically, we have HΩ ≃ ln(Ω) + γEM + O(Ω−1) where
γEM ≈ 0.577... is the Euler-Mascheroni constant. This
expression is independent of selection and, to leading or-
der, generally does not depend on the initial state of the
metapopulation. In the limit of a large metapopulation,
Ω ≫ 1, the metapopulation mean extinction time in the

FIG. 9. Metapopulation occupancy: Ωocc vs. t for cliques
(yellow), cycles (red), and grids (blue), with Ω = 100 and
K = 8. Simulation results averaged on 100 realisations for the
stationary number Ωocc of occupied demes for ψ = 100 (solid
lines), ψ = 5 (dashed lines), ψ = 2.5 (dotted lines), and ψ < 1
(dash-dotted lines). Eq. (8) predicts Ωocc = 100, 80, 60, 0 for
ψ = 100, 5, 2.5 and ψ < 1, respectively.

regime ψ(m,K) ≪ 1, is asymptotically given by the sim-
ple expression Eq. (13): θE(K,Ω) ≃ τE(ln(Ω) + γEM).
When Ω ≫ 1 and K ≫ 1, we simply have θE(K,Ω) ≃
eK ln(Ω)/K.
The result θE(K,Ω) has been explicitly derived for

cliques (island model), but is found to provide good qual-
itative insight into the extinction dynamics for cycles and
grids, see Fig. 2

Appendix D: Stationary deme occupancy

In the realm of the coarse-grained description of the
extinction-dominated regime discussed in the previous
section, we can use the rates B(j) = mKj(1 − j/Ω)
and D(j) = j/τE to estimate the number of occupied
demes Ωocc in the metapopulation when the environment
is static (constant carrying capacity K). At mean-field
level, we can write the following balance equation [35]

d

dt
Ωocc = B(Ωocc)−D(Ωocc),

= mKΩocc

(
1− 1

ψ
− Ωocc

Ω

)
.

(D1)

The equilibria of this equation are Ωocc = 0 and Ωocc =
Ωψ−1

ψ when ψ > 1. The equilibrium Ωocc = 0 is asymp-

totically stable when ψ < 1 and unstable otherwise. This
means that all demes go extinct, and there is extinction
of the entire metapopulation when ψ < 1. When ψ > 1,
the equilibrium Ωocc = Ωψ−1

ψ is asymptotically stable.

This corresponds to a fraction 1− 1/ψ of the demes be-
ing entirely occupied, and there is fraction 1/ψ of empty
demes. In the limit where ψ ≫ 1, we have Ωocc → Ω and
all demes and hence the metapopulation are fully occu-
pied. Putting everything together, we obtain Eq. (8).
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This mean-field derivation of Ωocc is accurate for large
clique metapopulations but, as it ignores spatial corre-
lations, it is a crude approximation for cycles and grids,
see Fig. 9. In particular, Ωocc overestimates the number
of occupied demes in cycles when ψ is not much larger
than 1. However, ψ = mKτE allows us to distinguish be-
tween different regimes and provides a sound estimate of
the number of occupied demes in the intermediate regime
when ψ(m,K) ≈ meK is sufficiently bigger than 1.

Appendix E: Average number of active edges on the
square grid and the influence of the spatial structure

In principle, the coarse-grained description of the
M/W competition holds for any regular circulation
graph. However, this approach requires the determin-
ing of the number of active edges, which, except for cy-
cles (one dimension) and cliques, is a difficult task due
to complex spatial correlations between demes. Here, we
consider the case of the square grid (with periodic bound-
aries), and illustrate how to estimate the average number
of active edges when the metapopulation consists of only
one single fully-occupied M deme and all other demes
are occupied by W cells.

In the case of a large metapopulation, Ω ≫ 1, with
unit spacing between neighbours, we assume that the
mutant spreads outwards from the initial M deme ap-
proximately forming a M -cluster having a circular front.
If this circular M -cluster has a radius r, it has an area
πr2 containing a number i of M demes. The boundary
of the circularM -cluster is of length 2πr. Assuming that
this length is equal to the number of M demes on the
boundary, we find that r =

√
i/π and there are 2

√
iπ

boundary demes given i demes of type M . We therefore
estimate that the average number active edges for a grid
is Egrid(i) ≈ 2

√
πi. We have notably used this approx-

imation in the transitions rates Eq. (10) and Eq. (19)
for the coarse-grained description of M/W competition
in static and time-varying environments in the regime of
weak bottlenecks.

In Figs. 2(a,c) and 4(c), we have found that the spa-
tial structure has a barely noticeable influence on the
fixation probability and mean fixation time when the car-
rying capacity is constant and in time-varying environ-
ments in the regime of weak bottlenecks. Fig. 10 shows
the heatmaps on a cycle and a grid metapopulation for
the “idealised treatment” proposed in Sec. IV 2, which
are almost identical. This is in accord with Eqs. (25)
predicting that the same migration rate yields the same
near optimal conditions for the heatmaps of metapop-
ulation on any regular graph, here a cycle and a grid.
Simulation results confirm spatial structure is only re-
sponsible for minor quantitative changes in the region of
the heatmaps corresponding to the near-optimal “treat-
ment conditions”. This stems from the removal scenario
characterising the idealised treatment being due to deme
extinction which is mostly independent of G and m.

Appendix F: Further details on the intermediate
dynamics in static environments

In this section, we provide further details about the
analysis of the intermediate dynamics in static envi-
ronments, see Sec. III 3. Here, we complete the re-
sult given in the main text by considering metapopu-
lation intermediate dynamics on a regular graph G (G-
graph), obtaining the explicit results ϕGint and θGint for
G = {clique, cycle, grid} reported in Fig. 11 when the
metapopulation initially consists of a singleM deme and
Ω− 1 demes occupied by W .
The intermediate regime is characterised by M/W

competition and deme extinction. Therefore, in addition
to invasions, aW deme may become anM deme through
extinction followed by a recolonisation, i.e. W → ∅ →
M , where ∅ indicates an extinct deme. Similarly, an M -
deme can be changed into a W -deme via M → ∅ → W .
We assume that there is initially a single M deme in the
metapopulation (and Ω − 1 demes of type W ). With
a probability psurv (see below), the initial M deme sur-
vives to reach the dynamical equilibrium that consists
of an unbreakable M -cluster whose size (number of M
demes) i = 0, 1, . . . ,Ωocc grows and shrinks through in-
vasions and extinction-recolonisation events. We assume
that immediately ΩE = Ω/ψ demes go extinct, so that
the metapopulation quickly reaches its equilibrium oc-
cupancy Ωocc = Ω(1− 1/ψ). In this dynamical equilib-
rium, a W deme can become an M deme via W → ∅ (W
deme extinction) at rate rext,W followed by ∅ → M (re-
colonisation byM) at rate rGrec,M . The overall extinction-

recolonisation reaction W → ∅ →M thus occurs at rate
1/(1/rext,W + 1/rGrec,M ). Here, the rate of W deme ex-

tinction is rext,W = (Ωocc − i)/τE and τE is given by
Eq. (6). We proceed similarly for the extinction of an M
deme and its recolonisation into a W site according to
M → ∅ →W . Taking also into account the rate of inva-
sion, see (10), the size i of the M -cluster on a G-regular
graph varies according to the transition rates

T̃+
i (m,G,K) = mK

EG(i)

qG

[
ρM +

1

ψ − 1

qG
Ω

i(Ωocc − i)

EG(i)

]
,

T̃−
i (m,G,K) = mK

EG(i)

qG

[
ρW +

1

ψ − 1

qG
Ω

i(Ωocc − i)

EG(i)

]
.

(F1)
With these rates, we can solve the following first-step
analysis equations for the probability ϕGint,i that the dy-
namical equilibrium comprising an initial M -cluster of
size i contains only of occupied M demes after a mean
time θGint,i:

(T̃+
i + T̃−

i )ϕGint,i = T̃+
i ϕ

G
int,i+1 + T̃−

i ϕ
G
int,i−1,

(T̃+
i + T̃−

i )θGint,i = 1 + T̃+
i θ

G
int,i+1 + T̃−

i θ
G
int,i−1.

(F2)

These equations are subject to the boundary conditions
ϕGint,0 = 0, ϕGint,Ωocc

= 1 and θGint,0 = θGint,Ωocc
= 0. We

thus have ϕGint ≡ psurvϕ
G
int,1 and θGint ≡ psurvθ

G
int,1 + (1 −
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FIG. 10. Near-optimal condition for the idealised treatment on a cycle and grid metapopulation. (ν,K−) heatmaps of Φ, Θ,
ΘE and (1 − Φ)(1 − Θ/ΘE) for the cycle (a-d) and grid (e-h) metapopulations, see Appendix E. Whitespace in panels (c)
and (g) indicate the region of the parameter where at least one realisation for those parameters did not reach extinction by
t = 105. Grey lines in panels (d) and (h) show the near-optimal conditions for the idealised treatment: ψ(m,K−) < 1 below
the top horizontal line, mK+θE > 1 above the bottom horizontal line, and νθE > 1 above the curved line, while the vertical
line indicates where ν < 1 and θE from Eq. (13). The near-optimal treatment conditions is the yellowish cloud at the centre of
the area enclosed by these lines. Other parameters are Ω = 16, m = 10−4, s = 0.1, and K+ = 200. In all panels, initially there
is a single M deme and Ω− 1 demes occupied by W .

psurv)τE . The factor psurv = Γ(Ω)
Γ(Ωocc)

1
ΩΩocc is the prob-

ability that the initial M deme reaches the dynamical
equilibrium, while the contribution (1 − psurv)τE to θGint
accounts for the probability that the initialM deme goes
extinct in a mean time τE (given by Eq. (6)) before reach-
ing the equilibrium. The final expressions of ϕGint and θ

G
int

thus read

ϕGint = psurv
1

1 +
∑Ωocc−1
k=1

∏k
m=1 γ̃(m)

,

θGint = ϕGint

Ωocc−1∑
k=1

k∑
n=1

∏k
m=n+1 γ̃(m)

T̃+
n

+ (1− psurv)τE ,

(F3)
where

γ̃G(i) ≡
ρW + 1

ψ−1
qG
Ω
i(Ωocc−i)
EG(i)

ρM + 1
ψ−1

qG
Ω
i(Ωocc−i)
EG(i)

, (F4)

and the upper limit of the first sum in ϕGint and θGint is
rounded to the nearest integer. We find that ϕGint de-
pends on the migration rate m, carrying capacity K, and

the spatial structure G via γ̃G and Ωocc. In the case of
the clique discussed in the main text, the expression of
Eq. (F4) simplifies to

γ̃clique(i) ≡ γ̃clique =
ρW + 1

ψ−1

ρM + 1
ψ−1

. (F5)

We notice that for all graphs G, the expressions
of Eq. (F3) coincide with those of Eq. (12) of the

competition-dominated regime, with γ̃G(i)
ψ≫1−→ γ =

ρW /ρM . In Fig. 11, we find that the predictions of
Eq. (F3) are in good agreement with simulation results
for all spatial structures G. Moreover, we notice that the
spatial dependence of ϕGint and θ

G
int is barely noticeably.

Appendix G: Fixation probability in time-switching
environments under weak bottlenecks

In this section, we discuss in further detail the depen-
dence of the fixation probability ΦG(ν,m) on the migra-
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FIG. 11. ϕint vs. K for s = 0.1 (blue) and s = 0.01 (red)
on clique (solid lines / crosses), cycle (dashed lines / circles),
and a grid (dotted lines / triangles). The different symbols
and lines are almost indistinguishable. θint vs. K for the
same parameters for a clique metapopulation. The vertical
solid and dashed line indicate where the number of occupied
demes Ωocc ∈ [1,Ω − 1], see text. The dotted line indicates
where ψ = ΩK, i.e. every individual migrates in the time
required for an independent deme extinction. Markers show
simulation results, solid lines are predictions of Eq. (F3), and
dash-dot lines are predictions of Eq. (12). Other parameters
are m = 10−4 and Ω = 16.

tion rate m and spatial structure G of the metapopula-
tion in time-switching environments under weak bottle-
necks.

In static environments, where K is constant, a gener-
alisation of the circulation theorem guarantees that the
fixation probability is independent on the migration rate
and spatial structure of the metapopulation arranged on
a circulation graph, see Eq. (12). This results from a
correspondence between the fixation probability and the
number of M demes performing a biased random walk
on [0,Ω] with a bias that is independent of m and G [41].
In time-switching environments under weak bottle-

necks (deme extinction is negligible) the correspondence
is between the fixation ΦG(ν,m) and the random walk
(with absorbing boundaries) on [0,Ω] × {−1, 1} for the
number of fully mutant demes in the environmental state
ξ = ±1. As a consequence, ΦG(ν,m) is the probability
of absorption in the state Ω. In this setting, defining the

state of the random walk by (i, ξ), where i = 0, 1, . . . ,Ω,
the random walk moves to the right (i → i + 1) with a
probability r(i, ξ), to the left (i → i − 1) with a prob-
ability ℓ(i, ξ), or switches environment (ξ → −ξ) with
probability ϵ(i, ξ), where

r(i, ξ) =
mNξ(ν)

EG(i)
qG

ρM,ξ(ν)

mNξ(ν)
EG(i)
qG

ρM,ξ(ν) +mNξ(ν)
EG(i)
qG

ρW,ξ(ν) + ν
,

ℓ(i, ξ) =
mNξ(ν)

EG(i)
qG

ρW,ξ(ν)

mNξ(ν)
EG(i)
qG

ρM,ξ(ν) +mNξ(ν)
EG(i)
qG

ρW,ξ(ν) + ν
,

ϵ(i, ξ) =
ν

mNξ(ν)
EG(i)
qG

ρM,ξ(ν) +mNξ(ν)
EG(i)
qG

ρW,ξ(ν) + ν
.

(G1)
ΦG(ν,m) thus coincides with the probability that the
random walk defined by Eq. (G1) gets absorbed in the
state i = Ω. For the fixation probability to be indepen-
dent of m and G then requires each of r(i, ξ), ℓ(i, ξ), and
ϵ(i, ξ) to be independent of m and G. However, this is
generally not the case in the presence of environmental
switching (ν > 0) due to the explicit and implicit depen-
dence of Eq. (G1) on ν (in the denominator and via N
and ρM/W ). This implies that in time-fluctuating envi-

ronments the fixation probability ΦG(ν,m) is expected
to depend on m and G.

Interestingly however, Fig. 4(c) illustrates the almost
unnoticeable dependence of ΦG(ν,m) on the specific spa-
tial structure. This is due to the overall similar impact
of the factor EG(i)/qG for the various graphs. While
differences arise when m varies at fixed ν due to large
variations in the timescales of the competition dynam-
ics (significantly more invasions when K = K+ than
when K = K−), varying spatial structure produces small
changes in these timescales, and as such leads to only un-
noticeable changes in Φ.

Appendix H: Asymmetric dichotomous Markov
noise & environmental bias

For the sake of simplicity and clarity, in the main text
we have focused on symmetric environmental switching.
In this section, we relax this assumption and outline how
the results of the paper can be generalised to the case
when there is an environmental bias, i.e. when there is a
different average time spent in the states ξ = ±1.

Here, we consider the coloured asymmetric dichoto-
mous Markov noise (aDMN), also called telegraph pro-
cess, ξ(t) ∈ {−1, 1} that switches between ±1 accord-
ing to ξ → −ξ at rate ν± when ξ = ±1 [68–70]. It is
convenient to write these asymmetric switching rates as
ν± = ν(1∓δ), where ν ≡ (ν−+ν+)/2 is the mean switch-
ing rate , δ ≡ (ν− − ν+)/(ν− + ν+) = (ν− − ν+)/(2ν)
denotes the switching bias, with |δ| ≤ 1 and δ > 0
when more time is spent on average in the mild environ-
ment [18, 19]. At stationarity, this aDMN has average
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FIG. 12. Fixation probability ΦG and mean fixation time
ΘG against switching rate ν for different values of δ. Red,
blue, and yellow represent δ = −0.5, δ = 0.0, and δ = 0.5,
respectively. Markers show simulation results and lines are
predictions of Eq. (24). Other parameters are Ω = 16, s =
0.01, m = 10−4, K+ = 200, and K− = 20.

⟨ξ(t)⟩ = δ and autocovariance ⟨ξ(t)ξ(t′)⟩−⟨ξ(t)⟩⟨ξ(t′)⟩ =
(1− δ2)e−2ν|t−t′| [16, 17, 68–70].

The aDMN drives the time-switching carrying capacity

K(t) =
1

2
[K+ +K− + ξ(t) (K+ −K−)] , (H1)

which is the same expression as Eq. (5), but now driven
by the aDMN ξ(t) [16–19, 21, 22, 32]. The carrying ca-
pacity switches back an forth from K+ (mild environ-
ment, ξ = 1) to K− < K+ (harsh environment, ξ = −1)
at rate ν± = ν(1∓ δ) according to

K+

ν+=ν(1−δ)−−−−−−−⇀↽−−−−−−−
ν−=ν(1+δ)

K−.

At stationarity, the expected value of the carrying ca-
pacity is ⟨K(t)⟩ = 1

2 (K+ + K− + δ(K+ − K−)), and
its auto-covariance is ⟨K(t)K(t′)⟩ − ⟨K(t)⟩⟨K(t′)⟩ =(
K+−K−

2

)2 (
1− δ2

)
e−2ν|t−t′| [68–70].

Under asymmetric switching, the stationary popula-
tion distribution of a single deme, both in the absence and
presence of migration (see Appendix A 2), is well approx-
imated by stationary density of the piecewise Markov

process Eq. (A4) (n-PDMP), now driven by the aDMN,
whose joint density is

pξ(ν, δ, n) ∝


1+δ
n2

(
K+−n
n

)ν(1−δ)−1 (
n−K−
n

)ν(1+δ)
if ξ = 1,

1−δ
n2

(
K+−n
n

)ν(1−δ) (
n−K−
n

)ν(1+δ)−1

if ξ = −1,

(H2)
where the proportional factor accounts for the normaliza-
tion constants. The stationary marginal density of this
n-PDMP, up to the normalisation constant, is

p(ν, δ, n) =
∑
ξ

(
1 + ξδ

2

)
pξ(ν, δ, n),

∝ 1

n2

(
K+ − n

n

)ν(1−δ)−1(
n−K−

n

)ν(1+δ)−1

,

(H3)
where we have again omitted the normalisation constant.
The n-PDMP density captures the mean features of the
deme size distribution: It is bimodal with peaks at K+

and K− (n ≈ K±) when ν ≪ 1, and is unimodal and
centred around n ≈ 2K+K−/[(1 − δ)K+ + (1 + δ)K−]
when ν ≫ 1 [18, 21, 22, 24, 32]. When ν(1± δ) ≲ 1, the
size n of each deme tracks the carrying capacity, and a
bottleneck occurs at an average frequency ν+ν−/(2ν) =
ν(1 − δ2)/2, each time K switches from K+ to K− [18,
21, 32].
In the realm of the coarse-grained description discussed

in the main text, the regime of weak bottlenecks domi-
nated by the W/M competition can be characterised by
theM fixation probability ΦG(ν, δ,m) and unconditional
mean fixation time ΘG(ν, δ,m) by Eq. (24) obtained by
solving the first-step analysis equations Eq. (21) and
Eq. (22) with the transition rates Eq. (19) and Eq. (20)
obtained using Nξ(ν, δ) averaged over Eq. (H3), i.e.
Nξ(ν, δ) =

∫
npξ(ν, δ, n)dn. The results of Fig. 12 for a

cycle metapopulation show that the predictions coarse-
grained description based on the PDMP approximation
Eq. (H3) are in good agreement with simulation results.
ΦG(ν, δ,m) and ΘG(ν, δ,m) are again found to exhibit
a non-monotonic dependence on ν, with extrema in the
range of intermediate ν. The main effect of δ is to in-
crease the M fixation probability and reduce the mean
fixation time when δ > 0, which is intuitively clear since
this corresponds to a bias towards the mild state favour-
ing the fixation of M .
The regime of strong bottlenecks is dominated by the

interplay between M/W competition in the mild state
(K = K+) and deme extinction in the harsh environmen-
tal state (K = K−), occurring in time θE ≡ θE(K−,Ω).
In this regime, the near-optimal conditions for the re-
moval of the mutant strain can be obtained as under
symmetric switching (given by Eq. (25)) and now read:

ψ(m,K−) < 1, ν(1± δ) ≲ 1,

ν(1 + δ)θE ≳ 1, mK+θE
1 + δ

1− δ
≳ 1,

(H4)

which, as Eq. (25), are conditions depending on m but
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not on the spatial structure G. The main differences from
Eq. (25) are in the conditions θEν− = θEν(1+δ) ≳ 1 and
mK+θE

ν−
ν+

= mK+θE
1+δ
1−δ ≳ 1. The first of these changes

ensures that a switch occurs before the metapopulation
mean extinction time in the harsh environment, θE . The
second ensures there are enough recolonisations in the
mild environment to maintain the metapopulation given
the minimum switching rate required to prevent extinc-
tion in the harsh environment, i.e. rearranging θEν− ≳ 1
gives ν ≳ 1/(θE(1 + δ)) and for sufficient recolonisations
we require mK+/ν+ ≡ mK+/(ν(1 − δ)) ≳ 1, where we
substitute our expression for ν. Since θE is independent
of δ, we expect that the conditions Eq. (H4) define a
region in the parameter space that is similar to that ob-
tained under symmetric switching, shifted towards higher
(lower) values of ν and K− when δ < 0 (δ > 0). This
picture is confirmed by the heatmaps of Fig. 13.

Appendix I: Simulation methods & plots

In this section, we explain how the simulation of the
individual-based dynamics of the full model have been
implemented. We also outline how we have plotted the
simulation/numerical data that we have obtained to pro-
duce the figures discussed in the main text and appen-
dices.

In addition to the coarse-grained descriptions of the
model that provide us with analytical approximations of
metapopulation dynamics in different regimes, we have
employed Monte Carlo (MC) methods to simulate the full
individual-based model and mirror the dynamics encoded
in the ME Eq. (A2). In this section, we outline how we
have performed the stochastic simulations that we have
notably used to test our analytical predictions.

While not exact like other simulation methods (e.g.
the Gillespie algorithm [98]), the Monte Carlo algorithm
used here improves on computational efficiency making
simulations with larger numbers of cells on the metapop-
ulation that run for long times feasible. The questions
of computational efficiency and tractability are particu-
lar critical in the context of this work in which we study
fixation and extinction of spatially arranged populations,
a notoriously computationally demanding problem.

In the case of symmetric environmental switching, the
MC algorithm that we have employed can be described as
follows: The graph, consisting of the spatially arranged
Ω deme forming the metapopulation, is initialised by ran-
domly picking an initial value for the carrying capacity
K(0) = {K−,K+} with equal probability (in the con-
stant environment case K(0) = K with probability 1),
populating a single deme with K(0) M -cells, and the re-
maining Ω − 1 of the demes with K(0) W -cells. Time
is then discretised in units of Monte Carlo steps (MCS)
whereby in each MCS we perform 2N birth and death
events, where N is measured at the start of the MCS. We
choose 2N as we typically have N births and N deaths
per unit time according to the transition rates Eq. (2) and

Eq. (4) when summing over all cells on the metapopula-
tion. Therefore, our units of time are consistent between
the theoretical model and the Monte Carlo simulation.
Each of the 2N events in an MCS occur sequentially and
the rates are updated for the next event in the MCS. The
type of each of the 2N events within an MCS is selected
based on the rates of the events, where a higher rate
means a larger probability of that event being selected.
Concretely, the following steps for a single MCS occur:

• Check if an environmental switch, occurring with
rate ν, occurs on the metapopulation. The rate of
reaction of birth/death/migration events on the en-
tire metapopulation is N(1+m+N/K(t)). There-
fore, the probability of an environmental switch is
given by ν/(N(1 +m+N/K(t) + ν).

• Otherwise, a deme x is picked for an event to
occur based on the total rate of events on that
deme, n(x)(1 + m + n(x)/K(t)). Therefore, the
probability of selecting a deme x for an event is
n(x)(1+m+n(x)/K(t))
N(1+m+N/K(t)) .

• A species is picked for an event to occur based on
the total rate of events of that species on the se-
lected deme. The propensity of a given species α
on deme x is nα(x)(1 + m + n(x)/K(t)), and the
total rate of events on the deme is as in the pre-
vious step. Therefore, that species is selected with

probability nα(x)(1+m+n(x)/K(t))
n(x)(1+m+n(x)/K(t)) = nα(x)

n(x) .

• The species on the deme can then either undergo a
birth, death, or migration event, with the probabil-
ity of each depending on the rates of these events.
Birth, death, or migration is selected with proba-

bility
T+,−,m
α (x)

nα(x)(1+m+n(x)/K(t)) .

• The selected event is performed.

• The above steps are repeated until 2N births and
deaths events are performed.

In all simulations, each realisation is simulated until fix-
ation, tracking when fixation occurs and which species
fixates. In simulations for Figs. 2(e-g), 6, 10, and 13 the
simulation then continues until metapopulation extinc-
tion or a large fixed time T (here we set T = 105). For
a given set of parameters, if extinction does not occur
in any realisation, the extinction time is not recorded.
The data is averaged to obtain the fixation probability,
the mean fixation time, and the mean time to extinction
where applicable. Furthermore, we record the standard
error on the mean for each quantity. In Figs. 2, 4, and
12, 103 realisations are ran for each set of parameters,
and these data are plotted with the standard error on
the mean shows as error bars. In the heatmaps, each
data point corresponds to the average value for 103 sim-
ulations at that point in parameter space. The standard
error on the mean is not plotted for the heatmaps.
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FIG. 13. Near-optimal condition for the idealised treatment on the clique metapopulation. (ν,K−) heatmaps of Φ, Θ, ΘE and
(1− Φ)(1−Θ/ΘE) for the δ = 0.5 (a-d) and δ = −0.5 (e-h) metapopulations, see Appendix H. Whitespace in panels (c) and
(g) indicate the region of the parameter where at least one realisation for those parameters did not reach extinction by t = 105.
Grey lines in panels (d) and (h) show the near-optimal conditions for the idealised treatment in the asymmetric environment:
ψ(m,K−) < 1 below the top horizontal line, mK+θE

1+δ
1−δ

> 1 above the bottom horizontal line, and ν(1 + δ)θE > 1 above

the curved line, while the vertical line indicates where ν < 1 and θE from Eq. (13). The near-optimal treatment conditions is
the yellowish cloud at the centre of the area enclosed by these lines. Other parameters are Ω = 16, m = 10−4, s = 0.1, and
K+ = 200. In all panels, initially there is a single M deme and Ω− 1 demes occupied by W .

In the case that K(t) = K = constant, we set ν = 0
and K+ = K− = K, such that the first step of the above
process is effectively skipped. In the case that the switch-
ing is asymmetric, the starting state is chosen according
to the stationary distribution of K(t), i.e. K(0) = K±

with probability 1±δ
2 . The probability for an environmen-

tal switch in the first step then depends on the current
environmental state, where a switch occurs with proba-
bility ν±/(N(1 +m+N/K(t) + ν±) for K(t) = K±.
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